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Abstract 

The reduction of an aircraft's radar cross section can increase its survivability in 

hostile airspace by making it more difficult to locate and track by enemy radar. Replacing 

articulated flight control surfaces with adaptive controls will reduce surface discontinuities, 

and enhance low observability. Actuation of the aerodynamic surfaces is achieved by an 

electric field applied to PZT actuators embedded in the top and bottom skins, creating 

differential strain and shear in the host substrate. This creates torsion about the elastic 

axis, and a change in the wing lift coefficient. The torsion of the designed baseline UAV's 

wing torquebox was modeled in the presence of a full complement of air-loads by extending 

the Bredt-Batho theorem. This was accomplished through modifying Libove's method, 

using a thin-walled, linearly elastic, fully anisotropic, trapezoid cross-section beam. The 

linear tip twist angles due to a uniform cross-sectional moment were verified using the 

isotropic Bredt-Batho theorem, and published anisotropic results by applying isotropic, 

then anisotropic laminate elastic properties. The isotropic solutions were within 3.1%; 

the anisotropic results were within 6.9-10.9% of the published angles. The PZT actuation 

of the host structure was achieved by substituting the PZT-composite laminate elastic 

properties into the derived solution and inducing strain and shear of the PZT lamina by 

applying an electric field, without the presence of external forces or moments. Using two 

different PZT laminae, the angular twist as a function of the host lamina orientation angle 

and applied voltage was recorded. The amount of twist ranged between 0.03-0.39 degrees, 

and 0.12-1.04 degrees for the AFC and G-1195 PZT laminae respectively. 

XI 



MODELING PIEZOCERAMIC TWIST 
ACTUATION 

IN SINGLE-CELL ANISOTROPIC 
TORQUE BOX 

OF LOW-OBSERVABLE UAV WING 

I.   Introduction 

Mathematics up to the present day have been quite useless to us in regard to flying. 

From the 14th Annual Report of the Aeronautical Society of Great Britain, 1879 

1.1    Background 

1.1.1 Aerial Reconnaissance. Strategic and tactical reconnaissance have 

been the sources of intelligence information for military commanders since the first hu- 

man armed conflict. One form of today's military intelligence gathering is overflight by 

reconnaissance vehicles, such as a satellite or aircraft. These sources provide detailed 

and accurate information that is mostly independent of local weather (Synthetic Aperture 

Radar, or infrared photography); however, they cannot always meet real-time demand. 

One might need to wait hours before the satellite is in position or until the long-range air- 

craft from a far away base is launched. Today's battle commanders and combat controllers 

demand up to the minute information on enemy positions as well as real-time battle dam- 

age assessment in almost all weather conditions.   The tactical unmanned aerial vehicles 
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(UAVs) can provide those pieces of information. They are deployed close to the conflict 

areas, can reach their targets quickly, loiter above the target area for extended periods, 

and they can also be quickly turned around for new missions. 

The UAVs for strategic reconnaissance in our current inventory are divided into 

three categories. The conventional, medium altitude endurance UAV, Predator (Tier II) 

is designed to provide 24-hour, near continuous, on-station surveillance with a 500 nm 

operational radius using simultaneous carriage of electro-optical (EO), infrared (IR) and 

synthetic aperture radar (SAR) sensors, at an altitude of 25,000 feet. Demonstrated system 

capability can provide 20 hours total flight time at 13,000 ft [7]. 

*'&"-*öz*  

Figure 1.1     MAE Predator UAV 

The conventional, high-altitude endurance (HAE) UAV, Global Hawk (Tier 11+) is 

designed to provide 24 hour, on-station surveillance with a 3000 nm radius using EO, IR 

and SAR sensors at an altitude of over 50,000 ft. The higher altitude and longer operational 

radius allows greater survivability and operational flexibility [7]. 
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Figure 1.2     HAE Global Hawk on the dry lakebed of Edwards AFB, CA. 

The low-observable (LO), high-altitude endurance UAV, Darkstar (Tier III) was 

designed for low observability and optimized for moderate endurance, high-threat recon- 

naissance missions in which coverage is more important than range or endurance. It is 

equipped with either EO or SAR sensors and flies at altitudes greater than 45,000 ft, with 

on-station flight time of eight hours and a 500 nm operational radius [7]. This program, 

however, was cancelled in 1998. 

There are two tactical reconnaissance UAVs in the current Army and Navy inventory. 

The Hunter is a short-range UAV operated by the Army, and is designed for a maximum 

altitude of 15,000 ft with a maximum range of 144 nm. The on-station endurance is 11.6 

hours. The Pioneer is a short-range, ship-launched tactical UAV operated by the Navy. It 

flies at a maximum altitude of 15,000 ft, to a maximum combat radius of 100 nm and has 

an on-station endurance of five hours [7]. 

1-3 



Maffi- * 

1^ ^ra 
k^sj&i 

a*rss»^i.';,i<Ä.u. ■ ■ • 

Figure 1.3     LO DarkStar UAV in flight 

Only Global Hawk uses jet propulsion (Darkstar was cancelled in 1998), and none 

employs low-observable (stealth) technology. This factor was a major contributor to los- 

ing four Predators (three lost to surface-to-air missiles /SAMs/), six Hunters (four lost to 

SAMs), and four Pioneers (three lost to SAMs) during Operation Allied Force [7]. While 

fortunately all of these losses were calculated in dollars and not in human lives, the vulner- 

ability of low-flying, non-stealthy UAVs remains a concern. This is why the Air Combat 

Command (ACC), the Air Force Research Laboratory (AFRL) and the Defense Advanced 

Research Projects Agency (DARPA) are currently conducting a joint unmanned combat 

aerial vehicle (UCAV) Advanced Technology Demonstration (ATD) program. In Phase II 

of the program (Engineering and Manufacturing Development, or EMD of the acquisition 

process) Boeing will develop two, low-observable technology (stealth) 8,000 lb, tailless, 34 

ft wingspan, jet-powered UCAVs [7]. 
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1.1.2 Issues in Low-Observability. We have seen that most of the 

tactical UAVs in the Kosovo and Bosnia operations were lost due to enemy fire. We also 

know that an aircraft's survivability in a hostile environment can be greatly enhanced 

by employing stealth technology, which reduces the vehicle's radar cross section (RCS) 

compared to that of a similar category and size of aircraft. There are a number of ways 

to reduce an aircraft's RCS, among them are the use of radar wave absorbing materials 

and paints, radar wave directing surfaces, enclosed ordinance, stores or equipment, and 

hidden surface discontinuities (such as weapons, engines, antennas). In order to reduce 

the RCS of the aircraft's wing, the structural discontinuities caused by the aerodynamic 

control surfaces (ailerons, flaps, slats or spoilers) need to be reduced or eliminated. The 

flight control of the aircraft then will have to be accomplished by adaptive control using 

adaptive aerodynamic control surfaces. These surfaces (wings, horizontal and vertical 

tail) will have to be actuated so that they can generate the necessary increase in the lift 

coefficient required for a particular type of maneuver. 

1.1.3 Adaptive Controls. The idea of using aeroelastic control by deform- 

ing lifting surfaces was first implemented by the Wright brothers. They achieved control 

of the Wright flyer by warping the end of the lifting surfaces by the means of cables and 

pulleys. This control scheme, however, proved awkward due to the complexity of its de- 

sign, and was ineffective at higher dynamic pressures due to the relatively primitive nature 

of the aircraft itself. Today, with more sophisticated tools and materials available, it is 

possible to realize the benefits of adaptive control, particularly through the use of strain 

actuation [16].   An adaptive airfoil equipped with strain actuators can then be used for 
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control by inducing twist, or camber in the wing, rather than using articulated control 

surfaces [16]. The induced twist and camber can then be regulated to produce the desired 

aerodynamic forces and moments. 

1.2    Induced Strain Actuation 

Induced strain actuation is the process by which actuation strain in the elements of a 

structure induces deformation of the overall structure. One of the most commonly used in- 

duced strain actuation methods is piezoelectricity, in which an applied electric field creates 

strain in the piezoelectric material. Shape-memory metal alloys (SMA), torque-tubes, mag- 

netostrictives, electrostrictives, and piezoelectrics, in particular Lead-Zirconium-Titanate 

(PZT) piezoceramics have been used as actuators. It has many advantages over other types 

of actuation because the actuators are easily integrated within the load bearing structures 

by either bonding it onto the surface or embedding it in the structural element. [10]. 

A number of studies have been published on the analysis of strain actuation using 

PZTs as actuators. The majority of the research involved the deflection control of rectan- 

gular plates and beams using surface bonded piezoceramic elements. Crawley and Lazarus 

(1989) have developed analysis techniques for strain-actuated, plate-like adaptive struc- 

tures, showing that induced strain actuation is an effective means for controlling those 

structures. The strain actuation was achieved by using composite materials, piezoceram- 

ics, and shape memory alloys. Their wind tunnel experiments demonstrated that sufficient 

static aeroelastic control can be developed using the adaptive structures [15]. Batra (1995) 

illustrated the use of PZTs as sensors and actuators to control the deflection of the cen- 

1-6 



troid of a rectangular plate subjected to a uniformly distributed load. To analyze the 

problem they developed a finite element model employing four-noded Lagrangian elements 

[4]. Crawley and Anderson (1990) modeled induced strain actuation of beam-like compo- 

nents of intelligent structures. They constructed a Bernoulli-Euler beam model of surface 

bonded, and embedded actuators, that included the extension and bending of the actuator. 

In order to resolve the uncertainty whether the surface bonded actuator they developed 

agrees with the Bernoulli-Euler beam model, they constructed a finite element model that 

included the extension, bending and shear in the actuator structure [8]. 

Because closed form solutions cannot be found for the majority of induced strain 

actuation problems, most of the work done with actual aerodynamic control surfaces dealt 

with the problem experimentally or used approximate solution methods [10]. Forster and 

Yang (1998) investigated the effects of using piezoceramic actuation in the flutter control 

of wing boxes. Assuming that the piezoceramic actuation can achieve the desired change 

in the natural frequency of the wing box, they demonstrated that significant savings in 

wing structural weight can be achieved [12]. Kudva, et. al. (1996) investigated the static 

adaptive control of aerodynamic surfaces with embedded shape memory alloys (SMA) 

providing antagonistic actuation. Their tests at NASA Langley in 1996 demonstrated 

an 8% increase in lift due to a wing twist of 1.25 deg [14]. Romeo, et. al. investigated 

the linear and nonlinear angle of twist of rectangular composite laminate torqueboxes, 

and contrasted the predicted values of twist with experimental results. They found good 

correlation between the theoretical analysis and the experimental results by considering 

the effects of the non-linear shear modulus caused by incomplete diagonal shear stress [24]. 
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Relatively few papers approached the problem using direct analytical methods with- 

out resorting to finite element methods. The wing structure — composed of spars and skin 

— is generally modeled as a closed-, single-, or multiple-cell, thin-walled beam section. 

The torsion of the wing can be analyzed as torsion of the closed section thin-walled beam. 

Badir (1995) developed a variationally and asymptotically consistent theory in order to 

predict the static response of anisotropic, thin-walled, two-cell beams subjected to exten- 

sional loads, torsion and bending. One of the major advantages of his study was that the 

displacement field was not assumed a priori, and it emerges as the result of the asymptotic 

analysis of the shell energy [2]. Libove (1988) generalized the Bredt-Batho formula for 

doubly-symmetric, anisotropic shells. In order to reduce the complexity of the solution, 

Libove simplified the problem to circular, and doubly symmetric, high slenderness ratio, 

bi-convex tubes of unit thickness. 

1.3    Scope and Approach 

This thesis investigates the possibility of eliminating the articulated ailerons by equip- 

ping the aircraft with an adaptive wing that uses piezoceramic torsion actuation for roll 

control. For this effort, a specific UAV design using conceptual aircraft design meth- 

ods is developed in order to obtain the wing structural parameters, such as spar heights, 

torque-box areas and skin thickness. The overall design is used to build a scale model for 

experimental scattering and RCS testing using the AFRL/SNA RCS evaluation facility. 

See reference [25] for details on the theoretical RCS computer simulation model and its 

comparisons with the experimental results. The selected wing design was a thin-walled, 

closed, three-section, box-beam construction.   The shear flow solution for the torsion of 



a single-cell, isotropic thin-walled box beam is going to be developed using the Bredt- 

Batho method. The technique is going to be expanded for the torsion solution of a closed, 

three-cell, isotropic box-beam. The classical theory will then be generalized to a single-cell 

isotropic and anisotropic model in order to account for elastic couplings present in modern 

laminated composite wing designs. To validate the accuracy of the generalized anisotropic 

solution, the generalized model isotropic result is compared with the Bredt-Batho results. 

The generalized anisotropic result will be compared to the results obtained by Romeo. 

To account for the PZT actuator lamina incorporated in the structure, a continuous PZT 

element was assumed to be embedded in the top and bottom surfaces of the single-cell 

box beam. The material elastic properties of the PZT-composite element are compared to 

those of the composite alone construction skin. The angular tip displacement due to tor- 

sion is compared to that of the composite only construction beam. The structure is strain 

actuated by applying an electric field to the PZT actuator lamina, and the generated twist 

angles will be compared to the angles generated by uniform torsion. 

1.4     Overview 

The current presented background information on current issues in UAV and low- 

observable technology. It also provided a review on some of the analytic and experimental 

work done on the subject of bending and torsion of beams, plates, and aerodynamic surfaces 

using piezoceramic strain actuation. Chapter II will detail the conceptual design of the 

proposed low-observable UAV in order to obtain the wing structural parameters, so that 

the wing structural geometry is based on a specific and realistic UAV design. It will 

identify the wing torquebox geometric dimensions for one specific gross weight UAV, as 
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well as those of the simplified torquebox in order to aid in the calculations presented in 

Chapters III and IV. This chapter will also include several other UAV designs based on 

maximum gross takeoff weight and wing aspect ratios in order to facilitate possible future 

extensions of this study to include trade studies of takeoff weight and piezoelectric strain 

actuation. 

Chapter III includes the shear flow solution for the torsion of a closed, single-cell, 

thin-walled, isotropic box-beam, and the extension of Bredt-Batho theorem to a closed- 

section, three-cell, isotropic beam. The required applied moment, the resulting shear flows 

in the individual structural members, and the tip angle of twist is detailed. 

Chapter IV derives the generalization of the Bredt-Batho theorem to a fully aniso- 

tropic, single-cell, asymmetric, thin-walled box beam through the modification of Libove's 

solution for the torsional displacement of closed-section, doubly-symmetric, single-cell, cir- 

cular tubes. To predict the accuracy of the solution, the method is applied to the torquebox 

geometry, designed in Chapter II, by considering it as an isotropic single-cell beam, and the 

solution obtained is then compared to that of the isotropic thin-walled beam of Chapter III. 

The accuracy of the anisotropic torsion model is compared to the values published in ref- 

erence [24] for the torsion of an anisotropic, rectangular box beam subjected to uniform 

cross-sectional moments. 

Chapter V extends the results of Chapter IV to a fully anisotropic, single-cell, thin- 

walled box beam with PZT lamina embedded in the center of the top and the bottom 

skins. The material properties of the PZT-composite will modify the constitutive relations 

of Chapter IV, and the resulting tip twist angle due to uniform cross-sectional moment 
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acting on the single-cell box beam will be compared to those calculated from Chapter IV. 

Piezoelectric strain is then applied to the PZT-composite construction, anisotropic torque- 

box, and the resulting tip torsional displacement is recorded as a function of applied voltage 

and substrate lamina angle. 

Chapter VI will detail the results obtained from Chapters III through V. Chapter VII 

will conclude and summarize the work included in this thesis, and will make recommenda- 

tions as to the direction of further studies or theses on this subject. 
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II.    Conceptual Design of Tactical UAV 

I began to realize that there might be something after all to Newton's Laws. 

Robert H.Goddard, 1902 

2.1     Operational Requirements 

The operational requirements for the proposed low-observable UAV were established 

in order to provide a design that bridges the gap between the high-endurance, high-weight, 

long-range Global Hawk, and the short-range, light-weight Predator. To establish realistic 

wing and torque box dimensions, some operational requirements were set, and six baseline 

UAVs were designed: three different takeoff weights, each with two different aspect ratios. 

All other design parameters (such as taper ratio, payload to gross weight percentage, etc.) 

were held constant. The aircraft operational requirements were set as: 

• Gross Takeoff Weight of 5,000, 10,000, and 15,000 lb 

• Useful Payload of 500, 1,000, and 1,500 lb 

• Single-Engine Jet Propulsion 

• Wing Aspect Ratio of 10 and 12 

• Mission Altitude of 25,000 ft 

• Endurance of 10 hours or more 

• Range of 2,000 NM, or more 

• Use of High Endurance Airfoil NLF( 1)0215 
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2.2 Conceptual Design Philosophy 

During conceptual design the engineer uses approximations to initially estimate the 

aircraft structural parameters and performance. For the initial estimates, conceptual de- 

sign equations are used, which in turn are iterated until the required design parameters 

are satisfied. More iterations can improve the design, but they also considerably increase 

the time and level of effort required to achieve the required performance and structural 

parameters. The purpose of the designs for this study was to obtain structural as well 

as performance parameters that are realistic to the given applications at hand, and not 

necessarily to design an aircraft that is ready to fly. In the case of the design of a complete 

aircraft, the conceptual design is followed by the phases of preliminary, then detailed de- 

sign. These phases further refine the performance and structural parameters by considering 

the effects of subsystems (cargo, engine size, landing gear fitting, etc.) on the overall design 

of the aircraft, and by considering the fulfillment of civilian (Federal Aviation Regulations 

or FARs set by the Federal Aviation Administration) or Military Standards (MILSTDs). 

For more detailed information about conceptual, preliminary and detailed aircraft design, 

the interested reader is referred to reference [22]. 

2.3 Initial Aircraft Sizing 

The initial sizing of the low-observable, tailless, single-engine, jet UAV was proposed 

in order to facilitate the manufacturing of a scaled model to be used as part of comparative 

RCS study, as well as part of studying actuated wing torsion. The initial sizing was carried 

out in order to provide approximate aircraft structural data that is suitable for the purposes 
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Table 2.1     Design Parameters 
Range (nm) 2,000 Wing Dihedral Angle (deg) 2 
Endurance (hr) 10 Specific Fuel Consumption (SFC) 0.4 
Aspect Ratio (AR) 12 Payload (Wpi){\b) 500 
Taper Ratio (A) 0.40 Fuel Weight Fraction (Wrf) 0.45 
Wing Thickness Ratio (t) 0.15 Empty Weight Fraction (Wre) 0.45 
Cruise Speed (kts) 180 Pre-Flight Fraction (/n) 0.97 
Stall Speed (kts) 80 Climb Weight Fraction (fr2) 0.985 
Oswald Efficiency (e) 0.8 Cruise Weight Fraction {fr^) 0.870 

of these studies, and it was not needed to be further refined by the methods of preliminary 

and detailed aircraft design. Therefore, only two sets of iterations were performed resulting 

in sufficiently accurate numbers for the purpose of the study. 

2.3.1 Design Parameters. In order to achieve the desired performance, 

several conceptual structural ratios and performance factors were assumed based on ac- 

cepted initial structural sizing ratios. Two aspect ratios (AR) of 10 and 12 were set, and 

an Oswald efficiency factor (which accounts for the span efficiency due to the non-elliptical 

lift distribution, as well as for the variations of the parasite drag with lift) of 0.80 was cho- 

sen for the low-speed, high L/D, low-wing aircraft configuration. The fuel-to-gross weight 

(FGW) ratio of 0.45 was assumed on the basis of FGW ratio of 0.35 of light business jets 

over 12,000 lb gross takeoff weight (GTW). The empty-to-gross weight (EGW) ratio of 0.45 

was assumed on the basis of extensive composite structure, and the EGW of 0.55 of all- 

metal construction, light business jets over 12,000 lb GTW. The specific fuel consumption 

(SFC) of 0.4 was assumed on the basis of older, less efficient engines SFC of 0.5-0.6. Fur- 

ther refinement and optimization of these parameters via preliminary and detailed design 

is suggested as topic of future research. The design parameters are shown in Table (2.1). 

Using the design parameters and the aircraft weight fractions from Table (2.1), the various 
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aircraft and fuel weights can be calculated: 

Wpl 

'9 = "'uaä'rciyibb-l-Wre-Wrf 
Wg = Gross Weight =       pl  Jxr (2.1) 

We = Empty Weight = WreWg (2.2) 

Wf = Fuel Weight = WrfWg (2.3) 

Wx = Pref light Weight = fr{Wg (2.4) 

W2 = Climb Weight = fr2Wl (2.5) 

W3 = Cruise Weight = fr3W2 (2.6) 

2.3.2 Aerodynamic Data. The initial design calculated the wing surface 

area required for the given cruise conditions in standard atmosphere by accounting for the 

fuselage form (lift) factor F, the decrease of lift-curve slope due to compressibility (Mach) 

effects, finite wing and wing sweep effects, and the reduction of wing area by the fuselage. 

The wing area for the given stall speed was calculated and was found to be greater than 

that required for the cruise conditions.   Because high-lift devices such as leading edge 
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Table 2.2     Aerodynamic Data for N! 

oistali (deg) 
oci (deg) 

1.7 
13 
0 

üQ (1/rad) 
aoL (deg) 
Cd 

,F-0215 Airfoil 
2TT 

-5.0 
0.008 

slats or slotted flaps are not considered due to the low RCS considerations, the wing area 

necessary for the slow flight (stall condition) was selected for the design. Although wing 

twist (wash-out) improves on the stall characteristics of an aircraft with tapered wings, 

this design did no select twist (as a function of span) in order to simplify the modeling of 

the RCS, ease of manufacturing, and simplified torsion. The aerodynamic data obtained 

from published airfoil data for the high-altitude, long endurance NLF(1)0215 airfoil are 

listed in Table (2.2), where Cimax is the maximum profile (2-D) lift coefficient, astaii is the 

profile (2-D) stall angle of attack (AOA), CKJ is the wing incidence angle (arbitrarily set), 

CLQ is the profile (2-D) lift-curve slope, aoz, is the profile zero-lift AOA, and Cd is the 2-D 

profile drag coefficient at aoL- Using these parameters, the approximate finite wing (3-D) 

lift-curve slope aw, the Mach number correction factor ß, and the lift curve slope corrected 

for compressibility effects r? can be calculated via Eqns. (2.7) through (2.9). 

dnn      
ARa0 

AR+2-mi 
(2.7) 

ß=JT^Ml (2.8) 

CLQ 
180 

(2.9) 
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Table 2.3     Structural Reference Values 
Reference Wing Span, bref (ft) 42 
Reference Wing Sweep, ffyre/) (rad) 4.08 ■ 10"3 

Reference Wing Area, Sref (ft
2) 151 

Exposed Wing Area Ratio, Ratio 0.825 
Fuselage Width, Wfuse (ft) 7uref 
Maximum Wing Lift Coefficient, Cnnax 1.52 

2.3.3 Reference Parameters. In order to be able to continue with some 

of the performance parameter calculations, it was necessary to set some of the structural 

and performance parameters as reference parameters. These values were then updated 

through repeated iterations until the desired convergence was obtained. The reference 

values necessary for the further steps in the design are listed in Table (2.3). These reference 

values were used in calculating the fuselage form (lift) factor F, the lift curve slope for the 

entire aircraft aw, the aircraft cruise lift coefficient Ctcruise-, the cruise wing loading Lw, 

and the total wing surface required for cruise, Scruise. These were calculated using 

F = 1.07   1 + 
Wf\ 

Vref, 
(2.10) 

CLqn      

2-nAR 

hW)( i + 
(tan(Qref)

2 

ß2 + 2 
180 >re/ 

(2.11) 

^Lcruise — Q"w \ ^cruise      &-0L) (2.12) 

J-'w — o ' P ' ^cr ' ^Lcruise (2.13) 
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Wo 
^cruise = ~J \"-^l 

Jw 

where p is the air density at mission altitudes, and Sexp is the exposed wing surface area 

not covered by the fuselage, given by 

Sexp — Ratio ■ Sref (2.15) 

The wing area for cruise (Scruise) obtained from Eqn. (2.14) will be compared to the wing 

area calculated from stall conditions. 

2.3-4     Wing Area. Now that some of the structural as well as some of 

the aerodynamic performance parameters were determined for cruise conditions in Sec- 

tion 2.3.3, the same were calculated for stall speed at standard sea level conditions. The 

values obtained in this present section were then substituted into the reference values of 

Section 2.3.3, and were iterated. For the stall conditions at sea level, the wing loading, 

wing surface, wing span, wing chord lengths as well as thickness at the root and the tip, 

wing sweep angle, and the maximum lift coefficient due to the wing sweep were calculated: 

Lw = Ö ' PO • vlr ' CLmax (2-16) 

Sstall = ^ (2-17) 
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b= y/AR ■ S, stall (2.18) 

25   \ 
Croot = bfl+Ä)     ^P =      ' ('7"00' 

(2.19) 

troot — ^ ' Croot     ''tip — ^ ' Qip (2.20) 

Cl = atari 
2-c ' '-'root (2.21) 

CLmax = 0.9 ■ C/maa; • COS (A) (2.22) 

where t is the wing profile thickness from Table (2.1), the factor 0.9 in Eqn. (2.22) is the 

generally accepted scaling factor, and A is the quarter-chord sweep angle given by 

A = atari 
, (1 — AjCroot 

'        26 
(2.23) 

Using the values obtained from Eqns. (2.16) through (2.23), we can define the reference 

values for the exposed wing area Sexp and the parameter Ratio, discussed in Section 2.3.3. 

These were calculated by 

x = —tan(Cl) 
14 

(2.24) 
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Cfuse = Croot ~ 2x (2.25) 

drnv — ^ n {Cfuse   i   croot)      n (2.26) 

Jexp — "->       bcov [Z.Zlj 

Ratio = %^ (2.28) 

where x is the decrease in the chord length due to the effects of the wing taper, cjuse is 

the wing chord length at the fuselage-wing connection, Scov is the wing area covered by 

the fuselage, Sexp is the exposed wing area not covered by the fuselage, and finally the 

parameter called Ratio is the value used in the initial calculations in Section 2.3.3. 

2.3.5 Drag and Power Required. In order to calculate the endurance and 

range of the aircraft, the drag and power required at various flight phases and conditions 

must be determined. The results can also be used during the preliminary, then detailed 

design to narrow the selection of suitable engines, and later to select the appropriate engine 

for the aircraft as well as for the mission. To find the drag estimate during cruise and stall, 

we calculate the lift coefficients for both conditions. The drag coefficient estimate at cruise 

and at stall will be the sum of the parasitic and induced drag coefficients.    The drag 
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coefficient at cruise is given by 

C2 

Cücruise — Cd H cru"e (2.29) 
ireAR 

where e is the Oswald efficiency factor (see Section 2.3.1) and AR is the wing aspect ratio. 

The cruise lift coefficient in Eqn. (2.29) is given by 

2W2 

pv2
crS ^Lcruise —   „,2  c (Z.6<J) 

Then, the drag estimate at cruise is obtained from 

1     2 
-^cruise = n P^cr^ Demise^ [Z.ol) 

In unaccelerated, straight and level flight, the drag is equal to the thrust required. The 

power required is calculated by multiplying the drag (thrust required) by the cruise velocity. 

PR = Dcruisevcr = TRVCT (2.32) 

The drag, thrust and power required for stall conditions can be readily calculated using 

Eqns. (2.29) through (2.32). For stall conditions, the values of CLmax, and Cocruise are 

substituted, wherever appropriate. 

2.3.6 Range and Endurance. For a jet powered aircraft, the specific fuel 

consumption (SFC) is defined as the weight of fuel consumed per unit thrust per unit time 

[13].  Because the fuel consumption of a jet airplane depends on the thrust produced by 
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the engine, the SFC for a jet airplane is defined as the thrust specific fuel consumption 

(TSFC), denoted by ct. With the assumption that ct is constant in time, for the endurance 

of the jet-powered aircraft we get : 

E = L2kln(^)(^-) (2.33) 
ctCD     \W3    \3600> V       ' 

Naturally, the lift and drag coefficients are for cruise conditions, Wg, and W3 are as defined 

in Section 2.3.1. The division by 3600 was used to obtain the endurance in the customary 

units of hours, rather than seconds. For the background and the derivation of Eqn. (2.33), 

the interested reader is referred to reference [13]. 

The range of the jet powered aircraft is calculated from the modified Breguet range 

formula (see reference [13]). Assuming constant Q, CL, CD, and p at cruise speed and 

conditions we have 

^^tV-'^ (2'34) 

Naturally, the lift and drag coefficients are for cruise conditions, Wg, and W3 are as defined 

in Section 2.3.1. The division by 6076 was used to obtain the range in the customary units 

of nautical miles rather than units of feet. 

2.3.7 Initial Sizing Summary. The initial sizing did not account for the 

loss of lift and increased drag due to the downforce generated by the longitudinal control 

surfaces (horizontal tail, and trailing edge elevator); the additional drag generated by the 

fuselage, or the lift lost due to positive dihedral and wing in-flight bending; the change 
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Table 2.4     Initial Sizing Results 
Aircraft Parameter Value Aircraft Parameter Value 

Wg (lb) 5000 6(ft) 42.66 
We (lb) 2250 croot (.ItJ 5.08 
Wf (lb) 2250 Ctip (ft) 2.03 
Wi (lb) 4850 fi (deg) 13.39 
W2 (lb) 4780 L'Lmaisiueep 1.52 

Q"w wing (.-L/oegj 0.09796 A(deg) 6.12 

ß 0.95 x(/t) 0.73 

V 0.99 Cfuse 3.63 
F 1.3976 &cov \J"t ) 26.53 

aw a/c (1/deg) 0.1108 &exp (ft ) 125.16 

^Lcruise 0.77 Ratio 0.82509 

■Lwcruise v.'"/./     / 38.19 ^Demise 0.0216 

^cruise (./£ ) 130.93 ^cruise [}■") 161.09 

&exp \Jt  ) 125.16 PR 48900 

Lwstall  {lb/'ft  ) 32.96 E (hr) 13.73 

^taH  (iV/*2) 151.69 R (nm) 2410 

in the maximum lift coefficient due to the increase in the Reynolds number (Re). The 

initial sizing neither calculated, nor attempted to achieve any stability derivatives. As it 

was pointed out earlier, preliminary and detailed design must take these variables into 

consideration. Not accounting for these factors in the conceptual design phase does not 

reduce the validity of the model intended to be used in the proposed studies. 

The results of the initial sizing after two sets of iterations are now summarized in 

Table (2.4). These values are presented for the 5,000 lb gross takeoff weight air vehicle. 

2.4     Wing Sizing 

2.4-1 Air Loads Estimates. The modeling of the system of aerodynamic 

loads acting on the aircraft at any given flight phase and atmospheric condition becomes 

increasingly complicated as our demand for accuracy grows.  To develop a true represen- 
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tation of the acting forces and moments, extensive finite element packages (NASTRAN, 

ASTROS, PATRAN) are commercially available. However, for conceptual design purposes, 

calculating the forces and moments even to sliderule accuracy was more than adequate. 

As it was stressed before, this would not be satisfactory if prototyping is imminent. Pre- 

liminary and detailed design must address the loads more accurately. For initial structural 

sizing, however, the aerodynamic loads (forces and moments) acting on the wing can be 

closely approximated by the sum of distributed forces acting as point loads and concen- 

trated moments. Therefore, the maximum lift force (vertical shear) is closely approximated 

by the expression 

L = {FS)(LLF)Wg (2.35) 

where the variable FS is the Factor of Safety, and LLF is the Limit Load Factor. The FS is 

commonly set to FS=1.5 for manned, and FS=1.2 for unmanned aerial vehicles. The LLF 

(also abbreviated by n) is commonly set to n=3.8 for normal category, n—4.4 for utility, 

n=6.0 for aerobatic, and n=2.5-3 for transport category aircraft. Fighter aircrafts draw 

their own mission specialized LLF requirements. For definitions on aircraft categories, 

please refer to reference [22]. The maximum bending moment acting on the wing will be 

conceptually modeled as 

M = Yi (2-36) 
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where L is obtained from Eqn. (2.35), and b is the wingtip to wingtip span. It is important 

to note while sizing the spars and the skin, that one wing carries only one half of L 

calculated from Eqn. (2.35). 

2.4-2 Spar Web Sizing. In order to properly size the main and the rear spar 

of the wing, a location of 25%, and 70% were chosen respectively. The selection of the 25% 

chord location of the main spar followed the generally accepted practice, since the pitching 

moment about the quarter chord of the airfoil is independent of the angle of attack. The 

70% chord location of the rear spar was chosen as to lessen the section's torsional stiffness 

by locating the two spars as close as practically acceptable. It was initially assumed that 

the main spar and the rear spar will carry 2/3 and 1/3 of the shear load respectively. A 

factor of safety (FS) of 1.2 was designated following the general practice for unmanned, low 

maneuverability vehicles. A limit load factor (LLF) of 2.5 was set, in the effort of designing 

the structure for a maximum of 2.5 g load factor. Finally, it was assumed that the main 

spar and the rear spar should carry 2/3 and 1/3 of the bending moment, respectively. 

As a general procedure, the structural components were sized and then evaluated for 

over-, or underdesign by evaluating the margin of safety (MS). The MS is given by 

MS = C™UcalLoad _ i (2.37) 
ActualLoad 

where the critical load is the appropriate maximum shear, compressive or tensile force, 

or bending moment allowed to be acting on the member (driven by material properties). 

The actual load is the corresponding actual maximum load designed to be acting on the 

structure. 
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In aircraft wing spar analysis it is commonly assumed that the spar caps absorb all of 

the bending stress, and the web (that is extended to the full depth of the spar) carries all 

of the shear [22]. The actual load situation is (as always) somewhere in between; however, 

for conceptual design purposes, these assumptions are more than sufficiently accurate. It is 

also assumed that the shear is constant within the web, and therefore, the maximum shear 

stress equals the average shear stress. The thickness of the main spar web was determined 

using reference [21]. Using the maximum design load L\, we have 

twebl = -X J- (2.38) 

where L\ is the maximum load on the main spar, rsmax is the maximum shear stress 

allowed (material properties), and h\ is the height of the main spar web (given by profile 

parameters). The spar web will fail in buckling long before the actual material maximum 

shear stress is reached. In order to account for the critical shear buckling stress Fscr, the 

shear web buckling parameter K, and web aspect ratio rweb (a/b in reference) was selected 

from reference [22]. The critical shear buckling stress is given by 

Fscr = KE (^) (2.39) 

where E is the material's Young's modulus.   The actual shear stress in the spar web is 

calculated by 

FSact = -r^— (2.40) 
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Table 2.5     Spar Web Sizing 
Parameter Main Spar Rear Spar 

Web Height (in) 8.4334 5.3035 
Web Thickness (in) 0.072 0.049 

Web Aspect Ratio, a/b 1.5 1.5 
Shear Web Buckling Parameter, K 11 11 

Area Moment of Inertia (in4) 3.599 0.609 
Critical Buckling Stress (psi) 8338 9765 

Actual Stress (psi) 8234 9620 
Margin of Safety 0.013 0.015 

Then, as discussed above, the MS of the web is given by substituting Eqns. (2.39) and 

(2.40) into Eqn. (2.37), that is 

MSyjebi = -1 
sact 

(2.41) 

The same procedure is repeated for the rear spar with the appropriate values of the maxi- 

mum design load and spar height. Initially, the web thickness underestimated the required 

thickness. After evaluating the critical buckling load, a few iterations are necessary in 

order to obtain a mandatory positive margin of safety. In designing weight critical struc- 

tures (such as aircraft), a 1-5% MS subject to the actual application at hand is generally 

accepted. For the main spar and rear spar, the MS was calculated to be 1.3%, and 1.5% 

respectively. The calculated values from Eqns. (2.38) through (2.41), including the values 

for the rear spar as well, are shown in Table (2.5). 

2.4-3 Spar Cap Sizing. The spar caps are usually equal, or unequal length 

angle sections bolted (or riveted) onto the ends of the spar webs. Their purpose is to carry 

the bending loads (as was discussed in Section 2.4.2) and to provide attachment surface 

for securing the wing skin. The procedure for selecting the appropriate angle section was 
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to iteratively evaluate the necessary area moment of the spar (web and caps), and check 

whether it satisfies the required area moment of inertia calculated from the engineer's 

theory of bending (see reference [21]). The required moment of inertia for bending is 

hea = —V (2.42) 

where M is the maximum bending moment acting on the spar, amax is the maximum 

material stress allowed, and y is the maximum distance from the web centerline to the top 

of the web. The combined area moment of inertia for the spar is given by 

J-spar = -leaps "T J-web \"m^") 

where the area moment of inertia for the caps (all four) is calculated using the parallel axis 

theorem 

leaps = ^Jangle + A-angleKV ~ Hangle)  \ (.^-44) 

The angle properties must be iterated (different angle sections selected) until the inequality 

Ireq ^ *-spar l^'^^/ 

is satisfied. 
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Table 2.6     Spar Cap Sizing 
Parameter Main Spar Rear Spar 

Unequal Length Angle Section 3x2.5x3/16 3x2.5x3/16 
Angle Section Area (in2) 0.996 0.996 

■tangle ^^  J 0.907 0.907 

Vangle (in) 0.888 0.888 
Angle thickness (in) 3/16 3/16 

Radius of Gyration (in) 0.954 0.954 

leaps V*^  ) 47.77 16.02 

J-spar (.ITl  ) 51.37 16.63 

*-req v^  / 44.97 14.14 

The same procedure was repeated for both spars, and the angle sections were iterated 

until the inequality of Eqn. (2.45) was satisfied. The final selection of caps for both spars 

are shown in Table (2.6). 

2.4-4 Skin Sizing. The theory of shear flows will be reviewed in Chapter III, 

Section 3.1.1. In the following discussion, it will be assumed the reader is familiar with the 

theory of shearflows, as well as the associated stresses and stress resultants. Also, reference 

[20] is a good resource for the following discussion. 

To approximate the geometry of the torquebox, and to calculate the moment of 

inertia about the horizontal axis, the average skin length lave, and average spar height have 

is calculated. 

"ave — 
/■ 21 

^22 
(2.46) 

f^avp, — 
h2 

(2.47) 
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where I21 and I22 are the top and bottom skin lengths of the torquebox respectively, hi 

and /12 are the main and rear spar heights, respectively. By summing the shearflow con- 

tributions all around the perimeter we get 

lij = 9(t-u-i) + T^capy (2-48) 

where qij is the shearflow in the different sections of the box beam, and L is the moment 

arm of the acting vertical shear (assumed acting at the geometric center of box the beam). 

The shear flow qo in the spar web can also be easily and very accurately approximated by 

= T + 2Aogi 
qo     2A0 + 2A0 

V       ' 

where T is the acting moment due to the vertical shear, and AQ is one half the enclosed 

area of the box beam. Because uniform torsion assumes the cross section is sufficiently 

braced against cross sectional deformation and warping, the rib spacing and skin panel 

aspect ratio (a/b) must be accounted for. Using the guidelines from reference [22], the 

shear buckling parameter K, and skin panel aspect ratio a/b is selected to be 

K = 11    ;    a/b = 1.6 (2-5°) 

The critical shear stress for buckling of the flat skin is again given by Eqn. (2.39), and is 

supplemented by the critical shear stress for buckling of the curved skin Fcru given by 

Fcrit = Fscr + KiEt-^ (2.51) 
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Table 2.7     Skin Thickness Sizing 
Parameter Value 

Average Skin Length, lave (in) 28.536 
Average Spar Height, have (in) 6.868 

Half Area of Torque Box, AQ (in2) 98 
Area Moment of Inertia, I (in4) 98.852 

Approximate Shearfiow, q\ (lb/in) 271 
Radius of Skin Curvature, r (in) 30 

Flat Plate Critical Shear Stress, Fscr (psi) 4118 
Curved Plate Critical Shear Stress, Fcrit (psi) 5782 

Actual Skin Shear Stress, fs (psi) 5687 
Margin of Safety, MS 0.017 

where K\ = 0.1 is given as empirical factor, and r is the radius of curvature for the skin 

panel. The skin shear is then calculated by 

fs = (2.52) 

where qi is the shearfiow calculated from Eqn. (2.48), and tskin is the initial guess for the 

skin thickness. The Eqns. (2.51) through (2.52) must be iterated until 

crit >fs (2.53) 

The measure of merit is again going to be the margin of safety, calculated by 

MSskin = —: 1 (2.54) 

The results of the skin thickness calculations and iterations for the 5000 lb gross takeoff 

weight UAV are presented in Table (2.7). 
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2.5     Wing Torque Box Identified 

2.5.1     Three-Cell,   Thin-Walled Torque Box. In order to facilitate 

the shearflow calculations of Chapter III, Section 3.1 and Section 3.2, all of the geometric 

properties of the wing box had to be identified. In order to do this conveniently, a Matlab 

subroutine called 'AREA' was written to calculate the areas of the first, second, and third 

closed sections of the three-cell beam. The subroutine is conveniently called by a driver 

program, to determine the total skin lengths of the nose section, the upper and lower 

center section, as well as the upper and lower skin lengths of the trailing edge section. The 

corresponding enclosed areas, Ai, A2, and A3 are also calculated. It is also necessary to 

determine the actual heights hi, and hi of the main and rear spar respectively at their 

corresponding locations, previously determined in Section 2.4.2. It is important to realize 

that the height of the main or rear spar is not going to be the actual dimensional distance 

from the nose multiplied by the profile percent thickness. That would lead to erroneous 

results. To avoid this, the subroutine INTERP was written, which is used by the subroutine 

AREA in a two-step iterative linear interpolation scheme in order to accurately locate the 

positions and calculate the heights of the main and rear spars. 

The driver program can also call a subroutine called PLOTPROFILE that will ac- 

tually draw a picture representation of the NLF(1)-0215F high-altitude, high-endurance 

airfoil. The airfoil data is stored in the subroutine NLF0215. The subroutines AREA, IN- 

TERP, PLOTPROFILE, and NLF0215 are included in Appendix A. The non-dimensional 

airfoil shape is shown in Figure (2.1). A dimensional plot of the NLF(1)-0215F profile with 

the wing root as well as at the wing tip is included in Appendix A. 
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Figure 2.1     The NLF(1)-0215F High-Endurance Airfoil Profile 

2.5.2 Simplified, Single-Cell, Thin-Walled Torque Box. Develop- 

ing the three-cell closed section torque box in Section 2.5.1 will aid in the calculations of 

shear flows, torques, and twist angles in Chapter III. The development of a more general 

solution in Chapter IV would not have been possible without a simplified geometric rep- 

resentation of the center, closed-section, single-cell torque box (with area A2). This is due 

to the fact that the mathematical representation of the curvatures of the upper and lower 

surfaces of A<i are not practical to obtain for the purposes of the calculations that follow. 

Because the length of the torque box (cr0ot = cr) is much greater than its maximum thick- 

ness (tr = 0.15cr), and the radius of curvature of both the bottom and top surfaces (Z21, 

and Z22) of the single-cell center section are much greater than 1 (r » 1), it is reasonable 

to approximate these surfaces with straight lines. 

Though the lengths Z21 and Z22 are not equal to each other (as it was determined 

from the subroutine AREA), their difference Z21 — '22 is much less than the length of the 
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torque box; therefore, it will be estimated that 

d=-cr(c2-ci) (2.55) 

where cr is the chord length of the wing root, c\ is the percent chord location of the main 

spar (ci = 0.25cr), c2 is the percent chord location of the rear spar (c2 = 0.75cr), and 

d is the calculated half-distance between the main and the rear spars. Because h\ ^ h2, 

the path-length correction factor T was found that will relate the actual lengths of the 

top and bottom surfaces to the horizontal half-distance (d) between the spars. Using the 

Pythagorean theorem we get 

T=,/1+('^Y (2.56) 

With all this information already at hand, the simplified geometry of the single-cell, closed 

section center torque box of the 5000 lb gross takeoff weight, AR=12 UAV is now iden- 

tified in Table (2.8). Figure (2.2) shows the simplified single-cell thin-walled torque-box 

dimensions. The equations for all four surfaces (two skins and two spars) in terms of the 

path-length coordinate s (that is using x(s), and y(s)) will be identified in Chapter IV, 

Section 4.1.1. 

2.6    Design Summary (Aircraft baseline) 

After completing the design for the 5000 lb, AR=12 configuration aircraft, the gross 

weight Wg and the aspect ratio AR of the aircraft was changed, and the process of con- 
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A   y (Structural Axes) 

>   x 

Figure 2.2     Single-cell Torquebox Geometry 

3le 2.8     Simplified Torque Box Dimensio 
Parameter Value 

Main Spar Height, h\ (in) 8.4334 
Rear Spar Height, /12) (in) 5.3035 
Main Spar Thickness, t\ (in) 0.072 
Rear Spar Thickness, £2 (in) 0.048 
Top Surface Length Z21 (w) 27.7732 
Bottom Surface Length I22 (in) 29.2992 
Skin Thickness, ts (in) 0.048 
Spars Half-Distance, d (in) 13.7160 
Path Length Correction Factor, T 1.00162 

ceptual design was repeated for the remaining aircrafts using identical design parameters 

listed in Table (2.1). Six overall designs were accomplished in order to facilitate future 

weight versus actuation requirements trade studies. The baseline aircraft parameters cal- 

culated via the iterative process detailed in Section 2.3 are listed in Table (2.9). The wing 

structural parameters calculated via the iterative process detailed in Section 2.4 are listed 

in Table (2.10). Five scale models of the finished design were manufactured by AFIT 

for the purpose of monostatic RCS testing in the AFRL/SNA facility.  The models were 
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Table 2.9     Aircraft Baseline Designs 
Gross Weight (lb) 
Aspect Ratio 

5,000 
12 

10,000 
12 

15,000 
12 

5,000 
10 

10,000 
10 

15,000 
10 

Empty Weight (lb) 
L/D 
Endurance (hr) 
Range (nm) 

2250 
29.66 
13.7 
2410 

4500 
29.27 
13.5 
2643 

6750 
28.86 
13.3 
2801 

2250 
26.36 
12.18 
2143 

4500 
25.92 
11.96 
2341 

6750 
25.47 
11.77 
2473 

Wingspan (ft) 
Wing Area (ft2) 

42.66 
151.69 

53.04 
234.46 

59.12 
291.24 

39.0 
151.07 

48.48 
235.05 

54.03 
291.97 

Root Chord (ft) 
Tip Chord (ft) 

5.08 
2.03 

6.31 
2.53 

7.04 
2.82 

5.57 
2.23 

6.93 
2.77 

7.72 
3.09 

Root Thickness (ft) 
Tip Thickness (ft) 

0.76 
0.30 

0.95 
0.38 

1.06 
0.42 

0.84 
0.33 

1.04 
0.42 

1.16 
0.46 

Ta ble 2.10 Wing Structure Baseline Designs 
Gross Weight (lb) 5,000 10,000 15,000 5,000 10,000 15,000 
Aspect Ratio 12 12 12 10 10 10 

ll(in) 31.5955 39.2456 43.7859 34.6431 43.1018 48.0153 
121 (in) 27.7732 34.4978 38.4889 30.4521 37.8875 42.2065 
122 (in) 29.2992 36.3933 40.6036 32.1253 39.9692 44.5256 
131 (in) 18.6520 23.1681 25.8484 20.4511 25.4445 28.3451 
132 (in) 17.4096 31.6249 24.1267 19.0888 23.7497 26.4571 
hi (in) 8.4334 10.4754 11.6873 9.2469 11.5047 12.8161 
h2 (in) 5.3035 6.5876 7.3497 5.8151 7.2349 8.0597 
Ax (in2) 91.9370 141.8475 176.5664 110.5282 171.0918 212.3232 
A2 (in2) 229.1889 353.6102 440.1609 275.5348 426.5133 529.2986 
A3 (in2) 38.5871 59.5351 74.1071 46.3900 71.8093 89.1146 
tskin (in) 0.048 0.058 0.064 0.047 0.056 0.062 
twebl (in) 0.072 0.098 0.117 0.075 0.101 0.120 
tweb2 (in) 0.049 0.067 0.079 0.051 0.069 0.082 
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manufactured with and without articulated ailerons to measure and compare the effects of 

wing discontinuities on RCS scattering. The fuselage, chime, and wing-body interface were 

designed by AFRL/SNA using low-observable design code. The results of the test will be 

compared to the scattering code developed and published in reference [25]. A picture of 

one finished model is presented in Figure (2.3). 

Figure 2.3     Scale Model of Prototype UAV for RCS Testing 
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III.    Torsion of Box Beams 

There will be no more accidents! 

Gen. Westover, Assistant Chief Air Corps, ordering to stop airmail plane crashes, 1934 

3.1    Single-Cell Beam Torsion 

3.1.1 Shear Flows in Thin Webs. The shear flow q in a thin-walled 

structural element is defined as the product of the shear stress as at the thin wall centerline 

and the thickness t of the element: 

q = ast (3.1) 

The unit of shear flow is force per unit length. The value of q in a closed, single-cell section 

subjected to torsion alone is constant along the section, regardless of the thickness t [18]. 

It is often necessary to obtain the resultant force on a curved web in which the shear flow 

q is constant along the length of the web. The differential element ds shown Figure (3.1) 

has horizontal and vertical components dz and dy. The force on this element is qds. The 

horizontal force Fz is 

Fz [  qdz = qz (3.2) 
Jo 
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Figure 3.1     Differential Element (Open Section) 

where z is the horizontal distance between the ends of the web.   The vertical force Fy 

acting on the element is 

Fy =        qdy = qy 
lo 

(3.3) 

where y is the vertical distance between the ends of the web. While Eqns. (3.1) and (3.2) 

are independent of the shape of the web, the total torsional moment of the resultant force 

depends on the shape of the web. The induced moment by the shear flow along the web is 

M =  I qrds =  / 2qdA = 2q      dA = 2Aq 
Js JA JA 

(3.4) 

where A is the total area enclosed by the web. 
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For closed, single-section beams, the constant shear flow q around the circumference 

of the web has no horizontal or vertical resultant force, since by Eqns. (3.1) and (3.2) the 

horizontal and vertical distances between the end points of the web are zero. The resultant 

of the shear flow is a torque (moment) equal to the applied external moment M, taken 

about an arbitrary axis perpendicular to the cross section. Thus, 

where A represents the total area enclosed by the web. 

The angle of twist per unit length of the closed, single-cell web is given by the Bredt- 

Batho formula for torsional displacement: 

ö = _J_y^ (3.6) 

where Go is the arbitrarily selected reference shear modulus of one of the structural mate- 

rials used, and 

** = ^1< (3.T) 

The quantity t* is the modulus weighted thickness, and G(s) is the shear modulus of the 

web section. In case of multi-material construction, G is expressed as G(s) because the 

value of G becomes a function of the circumferential coordinate s. The practical application 

of the formula implies that there is no warping constraint on the cross section, and it is 
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adequately stiffened internally against distortion; that is, the shape of the cross section is 

preserved, neglecting any Poisson's ratio effects [19]. 

3.1.2 Torsion of the Single-Cell Section. Revisiting the geometry of 

the torque-box developed in Chapter II, we can apply the Bredt-Batho formula directly 

by using Eqn. (3.6). Because the shear flow q is constant around the cross section, and the 

material properties are identical in all sections of the web, we can derive by inspection the 

formula for the geometry of the single-cell section: 

0 = 
2AG0 

qh      qh2      qh      qh\ 

G0
ls Go12 G0 Go «1 

(3.8) 

where l\ and 1% are the lengths of the top and bottom skins of the torque box; h\ and h2 

are the heights of the main and rear spars; ts, t\ and t2 are the thickness of the skin, main, 

and rear spar, respectively; and Gs and Go are the shear moduli of the skin and spars, 

respectively. Using the known applied moment M, we can solve for q from Eqn. (3.5) 

M 
2A 

(3.9) 

By factoring out q and substituting Eqn. (3.9) into Eqn. (3.8), we obtain 

e = M 
4A2G 

ATd     h2     hi  + —+ — 
ts <2 *1 

(3.10) 

where we used the relation lx & l2 = 2Td, where T and d are as defined in Chapter II. 
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In order to automate the calculations of Eqns. (3.9) through (3.10), a Matlab routine 

was written, and is included in Appendix B. The routine calculates the moment required 

for, and the shear flow generated by a given angle of twist. The code can be easily modified 

by interested readers to calculate the angle of twist generated by a given concentrated cross 

sectional moment, as well as the resulting shear flow. 

3.2    Multi-Cell Beam Torsion 

3.2.1 Torsion of the Multi-Cell Section. The solution for the torsional 

displacement of the thin-walled beam developed in Section 3.1 is directly applicable to 

multi-cell beams. However, sections with multiple cells are statically indeterminate. In 

order to solve for the angular displacement, we must enforce the condition of continuity of 

rotation, that is, the angular twist of all the cells must be the same: 

e1 = e2 = ... = en (3.11) 

where Q{ is given by the now familiar formula 

0i = -J—S^ (3.12) 
2AiG0      t* {       ' 

The modulus weighted thickness t* is as defined by Eqn. (3.7); however, in order to keep 

the notation as clutter free as possible, t* will be substituted using Eqn. (3.7). 
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In order to solve for the shear flows qi in the different sections of the multi-cell beam, 

we must first enforce the continuity condition of Eqn. (3.11). Using the three cells of the 

beam shown in Figure (3.2), by inspection we can write 

Figure 3.2     Three-Cell Beam (Closed Section) 

0i = 2A1G0 

qih      hi(qi -q2) 
fit 
Go 

Q±_ 
Go msl 

(3.13) 

02 = 
1 

2A2GQ 

qih\      h2(q2 - &)      <?2^>2 

S*2 G0 
ma2 

G± 
Go t2 

hi(q2-qi) 
G&f (3.14) 

03 = 2A3 G0 

Qshi   ,  <?3^32   ,  h2(q3 -q2) 

Go h Li« J. 
G^ a^ (3.15) 

where the structural variables are as defined in Chapter II, U are the skin thickness of 

the corresponding closed section (i = 1,2,3), and tSi is the main and rear spar thickness 

(i = 1, 2) respectively. The variables qi, q2, and qz are the shear flows in the nose, middle, 
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and tail sections of the three-cell beam, respectively. Enforcing the continuity condition of 

Qx = 02, and solving for <ji in terms of q2 and q$ we get (after some heavy algebra) 

M 
A2 

kl        l    M. _L     ^22       i     hi. 
G*t2   ^  ts2   ^   G*t2   ^  tsl Q2 + TT<& - 7-7^3 tsl^ ts2> 

qi ~~ _±L_ 4. hi. _|_  Mhi 
G*h ^ tsi ~r A2ts2 

(3.16) 

Notice that by arbitrarily selecting the spar's shear modulus G as the reference shear 

modulus Go, we can use the simplification GQ/GQ = 1 and GS/GQ = G*. By enforcing 

the next continuity condition 92 = 03, then by substituting for q\ using Eqn. (3.16), and 

solving for q$ in terms of q2, we obtain, after some considerable algebra 

CiC2 - ^C4 - (£M2 

where the constants Cq, C2, C3, and C4 are given by 

(3.17) 

Cl = J^ + hi + J^ + hi + ^hi (3.i8) 
G*t2       *s2        G*i2        *sl        ^Ms2 

<72 = Jl_ + *1 + il^ (3.19) 
G*ti     tfli     A2tsl 

M  (   H\      ,      ^32      ,    h,2 °"tK^^t) {m 

o=£(&+£+&+&' <3-21» 
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We are now ready to solve for q\ in terms of q2. Let's name the constant in front of 

q2 in Eqn. (3.17) to be S3. Take Eqn. (3.17) and substitute it into Eqn. (3.16) to get 

qi = tsl     t,2   iq2 (3 22) 

Again, let's name the constant multiplying q2 in Eqn. (3.22) as Si. 

In order to solve for the individual shear flows in the sections, we use the extended 

version of Eqn. (3.5), that is 

M = ]T(2A9i) = 2Aiqi + 2A2q2 + 2A3q3 (3.23) 

Because we solved for q\ and q3 in terms of q2, we can substitute Eqns. (3.16) and (3.17) 

into Eqn. (3.23) while using the convenient constants S\ and S3. 

M = 2{AtSi +A2 + A3S3)q2 (3.24) 

Prom this we can readily obtain the shear flow q2 

M 
Q2 = 2(AiSi +A2 + A3S3) 

(3,25) 

where the applied moment M is given by 

M = G0 J*6 = (GJ)effe (3.26) 
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In Eqn. (3.26) the quantity Go J* is called the torsional stiffness of the section, J* is the 

St. Venant's constant for uniform torsion given by 

AA2 

J* = ff- (3.27) 
9wds 

Substituting Eqn. (3.7) for the modulus weighted thickness t* we get 

AA2 

J* = r /  i    A (3-28) 

from which we obtain the effective torsional stiffness 

AA2 

G0J* = {GJ)eff = 7 j--- (3.29) 

In order to find the effective torsional stiffness of the three-section beam, we first need to 

evaluate the effective torsional stiffness of each section. The combined effective torsional 

stiffness is given by the sum of the individual torsional stiffnesses. 

4A2 

(GJ)effl = ^     ' (3.30) 
Gst\       Gotsi 

AA2 

(GJ)efh =   hr h2       \22 hl (3-31) 
Gst2 Gots2 Gst2 Gotsi 

•±^i3 

/si 
Gst3 + Z32 

Gst3 
+ h2 

Got32 

(GJ)efh =   ,„    ,    .   3,    fa9 (3-32) 
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Then the effective torsional stiffness (GJ)eff for the three-cell beam can be calculated by 

using Eqn. (3.29) 

(GJ)eff = (GJ)efh + (GJ)efh + (GJ)efh (3.33) 

We now have arrived at the final solution of the torsion of the three-cell beam section. 

The required moment (in units of in-lb) to generate a given angle of twist 6 (in units of 

radians), and the resulting shear flows (force per unit length, in this case lb/in) can be 

calculated using the following relations. 

M = (GJ)effe (3.34) 

M 
Q2 = 2(AlSl + A2 + A3Ss) (3-35) 

q1 = Siq2 (3.36) 

<?3 = Szq2 (3.37) 

To automate the calculations of Eqns. (3.5) through (3.37), a Matlab program called 

SHEARFLOW3CELL was written to calculate the shear flow and moment required to 

generate a given tip twist angle for the given geometry single-cell, closed-section box beam. 
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The code was extended to calculate the individual shear flows in the three sections of the 

closed box beam, as well as the moment required to generate the given tip twist angle. By 

running the program, a direct comparison can be made between the effectiveness of the 

single-cell and the three-cell beam in resisting torsional moments. The Matlab program is 

included in Appendix B. 
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IV.    Generalized Torsion Solution 

There will be no more flying! 

Maj Byron Q. Jones, Eastern Airmail Zone Commander, responding to Westover, 1934 

4.1    Homogeneous Isotropie Single-Cell Beam 

4-1-1 Geometry and Loading. While the shear-flow solution of the one, 

or multi-cell torque box is useful due to its relative simplicity, it only applies to isotropic 

beams. It also applies to specially orthotropic construction, meaning that at least one 

of the axes elastic symmetry is parallel to the longitudinal axis of the thin-walled beam 

[17]. One disadvantage of the method is that it does not account for applied loads other 

than the applied torque acting on the cross section. Therefore, in this section, we extend 

the Bredt-Batho theorem by generalizing the method developed by Libove (see ref [17]) 

and develop an analytical solution for the torsional displacement of the fully isotropic, 

thin-walled, linearly elastic, single-cell box beam in the presence of a full complement of 

air loads. The theory assumes that no cross-sectional warping occurs (shape of the cross 

section is preserved), and that the longitudinal strains vary linearly over the cross section 

(linearly elastic). In order to evaluate the validity, as well as the accuracy of the solution, 

in Section 6.1 we will check the isotropic solution against the shear-flow solution developed 

in Chapter III. 

Let this beam segment be subjected to a system of external loads consisting of forces 

and moments applied at the end center of the cross section as shown in Figure (4.1). These 
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forces and moment may be the result of applied thrust (longitudinal or vertical), vertical 

and horizontal shear due to lift and drag respectively, twisting moment due to external 

stores or strain actuation, as well as bending moment due to lift or structural weight. In 

*-x 

Figure 4.1     Forces and Moments Applied to Closed Section [17] 

the actual cross section there may be distributed forces and moments; however, these will 

be approximated by concentrated forces and moments acting on the section. By taking 

a differential segment dz of the cross section, the applied loads will be assumed constant 

within dz, but will be different from one segment to the next. In effect, the spanwise 

varying loads are approximated by piecewise uniform forces and moments. 

For simplicity, only a single cell beam is considered. The beam is assumed anisotropic, 

so that normal stress at a point tends to generate shear strain (7) and longitudinal strain 

(e) as well. The cross-sectional shear flows tend to produce longitudinal strain and shear 

strain. This interaction between normal stress and shear strains is called elastic coupling. 
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Before we can start on the solution, we have to establish the cross sectional geometry 

of the beam, and define the equations of the walls of the section. Establishing the exact 

geometry of the actual airfoil's center torque box is not an impossible task; however, it 

would not serve a very useful purpose as it would yield prohibitively lengthy symbolic 

results throughout the analysis. Therefore, a generalized, simplified geometry is used that 

approximates the actual geometry of the torque box as a generic trapezoid, defined in 

Chapter II. 

Let the x-y coordinate system be defined with its origin in the geometric center of 

the trapezoid cross section. In addition, let the s coordinate be defined as the clockwise 

"path-length coordinate" around the perimeter of the trapezoid, starting from the upper 

left-hand corner (s = 0). Then, it can be shown that for the four sides of the trapezoid 

torque box we can define y(s) and x(s) as 

y{s) = < 
2Td -s + \h2 

}^{2,Td-s + h2) + \{h2 + hl 

s - 4Td -h2- \hi 

: Top Side 

: Right Side 

: Bottom Side 

: Left Side 

(4.1) 

x(s) = < 

s 
T-d 

3d — ^(s — h2) 

-d 

Top Side 

Right Side 

Bottom Side 

Left Side 

(4.2) 
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The clockwise path coordinate s around the perimeter is piecewise continuous. The 

discontinuities in y(s) at the respective values of s (at the corners of the trapezoid; see 

below) also serve as the limits of integrations for all the integrals developed below. For the 

sake of simplicity, these limits will be abbreviated wherever appropriate by the following 

definitions. Starting from the upper left-hand corner (s = 0), these limits are 

sx = 2dT s2 = 2dT + h2 
(4.3) 

s3 = 4dT + h2   s4 = AdT + h2 + hx 

4-1'2 Constitutive Relations. In order to arrive at any meaningful and 

relatively simple solution, the walls of the box beam are assumed to be thin enough, so 

that they can be viewed as membranes in plane stress (033 =0). In order to keep the 

solution general, the method will be applied to a torque box made of walls of non-unit 

thickness. The solution can also be easily modified by interested readers to unit thickness. 

This can be achieved by simply assuming t — 1, thereby eliminating all the wall thickness 

dependencies in the equations. We can also assume that the normal stress resultant per 

unit length Ns along the s direction is negligible [17]. This way the state of plane stress 

can be described for the element as a shear flow q, and a tension flow N, both having 

units of force per unit depth. Figure (4.2) shows the differential element and the state of 

stress of the differential element. The normal strain e and shear strain 7 (both unitless) 

are related by the constitutive relations 

1 1 
e = axN- + a2q- (4.4) 
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Figure 4.2     State of Stress of Differential Wall Element [17] 

7 = a2N- + a^q- 
U 0 

(4.5) 

where t is the wall thickness, and «i, a2, and 0:4 are elastic constants yet to be defined. 

We can solve for N and 7 by rearranging Eqns. (4.4) and (4.5) to get 

N = ßxet + ß2q (4.6) 

7 = -ß2e + ß4q- (4.7) 

where ßi are given by 

ßi = 
(X\ 

(4.8) 
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A = — (4-9) 

% = «4 - ^2 (410) 

To determine the elastic constants a\, a2, and a^ we need to write the full anisotropic 

strain-stress (constitutive) equations for plane stress (033 = 0): 

e = SuNj + Sl2Nsj + Suq^ (4.11) 

es = S12Nj + S22Nsj + Suqj (4.12) 

>T = SuN^ + SuNsj + Suq\ (4.13) 

where S is the matrix inverse of the elasticity matrix, called the compliance matrix. By 

ignoring the transverse strain es, setting the transverse tension flow Ns to zero, and com- 

paring with Eqns. (4.4) and (4.5) we get 

«i = S11 (4.14) 

a2 = 5i4 (4.15) 
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aA = Su (4.16) 

Therefore, by determining the compliance matrix S for the given material we also determine 

the coupling elastic constants «2, and ß2- 

4-1.3    Analysis. 

4-1.3.1    Preliminary Considerations.      We can establish the differential 

equations of equilibrium for the differential element 

P- = 0 (4-17) oz 

§♦£- 

Prom Eqn. (4.17) we can see that the shear flow q(s) is a function of s only. Integrating 

Eqn. (4.18) we get 

q(s) = qo-J   ^dx (4.19) 

Figure (4.3) represents the differential cross section dz of the single cell beam, indicating 

the longitudinal shear flow go at s = 0, and the differential change in the tension flow 

N with dz.   In the classical theory of isotropic, homogeneous, thin-walled beams, the 
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Figure 4.3     Shear Flow and Change in Tension Flow with dz [17] 

cross-sectional normal stress is assumed to vary linearly with x and y [17]. That is, 

e = e0 - yKx - xKy (4.20) 

where eo, Kx, and Ky are functions of z. This formulation assumes only linear midplane 

translational strain eo in the z coordinate direction, as well as linear curvatures (or also 

called rotations in some literature) Kx and Ky of the cross section at z around the x and y 

coordinate axes, respectively. In this way the warping functions are ignored from the dis- 

placement formulation that will lead to less accurate answer for the torsional displacement. 

See reference [1] for accounting for bi-quadratic warping functions and the qualitative im- 

provement they yield in the results. Let's substitute Eqn. (4.20) into Eqn. (4.6) and 

differentiate with respect to z to get 

N = ßit(e0 - yKx - xKy) + ß2g (4.21) 
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— =ß1t(e'0-yK'x-xK'y) (4.22) 

Substituting Eqn. (4.22) into Eqn. (4.19) we get 

q(s) = q0 -  f ßrfie'o - yK'x - xK'y)ds (4.23) 
Jo 

We can simplify Eqn. (4.23) by declaring 

q(s) = q0- e{,ai(s) + K'xa2(s) + K'a3(s) (4.24) 

where 

«i (s)= f ßtfds (4.25) 
Jo 

a2(s)= [ yßtfds (4.26) 
Jo 

a3(s)=  f xßitds (4.27) 
Jo 

Equations 4.25 through 4.27 are solved individually and consecutively for all four 

surfaces of the trapezoid, yielding four equations for each ai{s) equation. Each surface 

will have its own contribution that is added to the contribution of all surfaces previously 

evaluated. The method of solving Eqns. (4.25) through (4.27) is demonstrated via a\{s). 
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The solution of 02 (s) and 03 (s) follows the same technique. 

ai W*= f/^ds (4.28) 
^0 

p2dT ps 

ai{s)r= ßitsds+ ßxt2ds ■   (4.29) 
JO J2dT 

p2di pzar+n2 rs 
ai(s)b = /       ß1tsds + ß1t2ds + ßitsds 

JO J2dT J2dT+h2 

(4.30) 

p2dT p2dT+h2 rAdT+h2 rs 
ai{s)1 = ßitsds+ ßit2ds+ ßitsds + / ßihds       (4.31) 

Jo V2dT J2dT+h2 J4dT+h2 

where ts, t\, and £2 are the thickness of the top and bottom skin, the main spar (left side) 

and rear spar (right side), respectively. The superscripts t, r, b, and / of Oj(s) are for 

the top, right, bottom, and left sides respectively. To solve Eqns. (4.28) through (4.31) I 

suggest the use of any symbolic solver algorithms currently available, such as MathCad, 

Matlab or Mathematica. The symbolic results of Eqns. (4.28) through (4.31) are relatively 

simple and will not be reproduced here. 

4.1.3.2 Equations of Static Equivalence. At any cross section of the 

beam, the longitudinal force per unit length N must be statically equivalent to the cross- 

sectional extension force P, the cross sectional bending moment about the x axis Mx, and 

the cross sectional bending moment about the y axis My [17].   By using Eqn. (4.21) to 
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eliminate N from the integrals, we get 

P = I Nds = l [ßit{e0 - yKx - xKy) + ß2q]ds (4.32) 

M3 = - f yNds = - f y[ßit{eo - yKx - xKy) + ß2q]ds (4.33) 

My = - <t> xNds = - f x[ßit(e0 - yKx - xKy) + ß2q]ds (4.34) 

In order to express these equations in a matrix form, let's first write out Eqns. (4.32) 

through (4.34): 

eo f ßitds — Kx <j> yßitds — Ky j> xßitds 

-eo (f> yßitds + Kx j> y2ßitds + Ky <p xyß\tds 

-eo f xßitds + Kx <£> xyßitds + Ky <t> x2ßitds 

P- l ß2qds 

Mx+ j> yß2qds 

=    My+ j> xß2qds 

(4.35) 

(4.36) 

(4.37) 

After multiplying the last two equations by —1, we can write them in a more manageable 

matrix form 

" r         \ ' 

bn   bu   hi eo P-Qi 

b2i   b22   &23 < Kx 
>  =  < -Mx - Q2 

hi     &32     &33 Ky -My - Qz 
V / 

(4.38) 
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where the b matrix is made up of the following elements: 

hi = § ßitds     hi = ~ § yßitds     6i3 = - § xßitds 

b2i = §yßitäs   b22 = -§y2ßltds    623 = - §xyßitäs (4-39) 

631 = § xßitds   632 = - § xyßitds   633 = - § x2ßitds 

We can certainly solve [bij] by hand, but they are best left to computer symbolic solvers. 

It is important that we observe these integrals are full path integrals, and the limits of 

integrations are as defined in Eqn. (4.3). Due to the asymmetry about the y axis (we 

defined the cross section of the torque box as a trapezoid), the b matrix is not diagonal. 

The off-diagonal elements are all zero, except 613 = —631 7^ 0. Also, to complete the 

solution of Eqn. (4.38), we have 

Ql=§qß2ds    ,    Q2 = §yß2qds    ,    Q3 = fxß2qds (4-40) 

However, for the homogeneous, isotropic case, Qi = 0, because the coupling elastic constant 

a2 = 0; therefore, ß2 = 0. In the non-homogeneous, anisotropic case discussed later (see 

Section 4.2), the S compliance matrix is fully populated, and a2 ^ 0; therefore, ß2 ^ 0. 

In order to solve for the unknown functions eo (longitudinal strain in the z direction), 

Kx (rotation about the x axis) , and Ky (rotation about the y axis) of Eqn. (4.20) we invert 
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[bij] to get [aij]. That is 

'          > f                                                   > 

eo Oil Ol2 ßl3 P-Qi 

Kx > = «21 022 «23 < -Mx - Q2 

Ky «31 «32 «33 -My - Qz 

(4.41) 

Differentiating Eqn.  (4.41) with respect to z (P = const, dMx/dz =  —Vx  = const, 

dMy/dz = —Vy = const), we get 

K„ 

K. 

> = 

" /       \ 

an «12 ai3 0 

«21 «22 «23 < 
^ ' 

031 «32 «33 vx \        J 

(4.42) 

The shear flows q(s) must be statically equivalent to the applied moment M [20]. 

Here we define the quantity p(s) as the perpendicular distance from the origin to the 

point on the cross section defined by the path coordinate s. In case of the trapezoid cross 

section, p(s) = const for all sides. For the left and right sides p(s) = d. For the top and 

bottom sides, p(s) can be very closely approximated by p(s) = ^(h\ + ^2)- Because p(s) 

is a measure of distance, p(s) = d for the left side as well as for the right side. Using 

Eqn. (4.24) the expression for the applied moment can is written as 

M = j>p(s) [q0 - e'oai(s) + K'xa2(s) + Kya3{s)} ds (4.43) 
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from which we can directly solve for go by 

J> p{s)q0ds = M + e'0 ( * p{s)ai(s)ds ) - K'x ( <b p{s)a2{s)ds j - K'y ( j> p(s)a3(s)di 

(4.44) 

f p(s)ds y 

where the constants 04, 05, and a^ are given by 

a4 = j> p(s)ai{s)ds (4.46) 

a5 (b p(s)a2(s)ds (4.47) 

a6= i p(s)a3{s)ds (4.48) 

The quantity j  /,,   in Eqn. (4.45) is the reciprocal of twice the torque box area, that is 

§p{s)ds = 2Ä (4'49) 

4-1-4 Rate of Twist. The classical theory of thin-walled beams relate the 

rate of twist of a cell to the shear strains in the wall of the cell [26]. Because we are 

determining the static deformation of the section, the rate refers to the change of the angle 
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along the longitudinal coordinate z, as opposed to the change of angle in time. We write 

the relation as 

£ - u * «•*> («o) 

where <f>{s) is the angle of twist. In order to define the shear strain 7(0), we need to revisit 

Eqn. (4.7), reproduced here for convenience: 

7 = -fa + ßiq\ (4-51) 

The longitudinal strain e was defined by Eqn. (4.20), and the shear flow q(s) was given in 

Eqn. (4.24). Using these two equations in Eqn. (4.7), we have 

7(s) = -/32(e0 - yKx - xKy) + & [?o - e'0ai(s) + K'xa2(s) + Kya3(s)} l- (4.52) 

Substituting Eqn. (4.52) into Eqn. (4.50), we get 

^ = 22 [-£ocii + KxC2i + Kvc3i + qodi + e'Qd2 + K'xd3 + K'yd±] (4.53) 

where the constants d{ are given by 

d\ = d> Äi-ds = j>ßi-t&s (4.54) 

d2 = - f ai(s)/34-ds (4.55) 
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^3 = <tia2(s)ß^ds (4.56) 

d4 = j> a3(s)ß4-ds (4.57) 

The methodology solving Eqns. (4.54) through (4.57) follows the technique outlined in 

Eqns. (4.28) through (4.31). For example, solving for d2 for each side of the trapezoid, we 

must use the corresponding expression for a\{s) from Eqns. (4.28) through (4.31), and the 

corresponding value for the wall thickness t(s). That is 

p2dT i 

d2=    - a\(s)ßAr 
Jo rs 

f2dT 

'-ds 
bs 

r2dT+h2 1 
/ a[(s)ß,-ds 

J2dT l2 
r>4dT+h2 />4<Zi +/l2 1 

/ a\(s)ß4Tds 
J2dT+h2 

ls 
fidT+h2+hi i 

/ a[(s)ßt-ds (4.58) 
J4dT+ho H l4dT+h2 

The constants Cij in Eqn. (4.53) are all identically zero for the isotropic case, because the 

coupling elastic constant ß2 is zero. Therefore, the equation for the rate of twist for the 

single-cell isotropic thin-walled beam can be simplified from Eqn. (4.53) as 

dz = 2Ä (q°dl + e'°d2 + K'xdz + K'yd^ 
(4.59) 

where the constants di are known through Eqns. (4.54) through (4.57), the constant shear 

flow go is given by Eqn. (4.45), and the constants e'0, K'x, and K'y are found from Eqn. (4.42). 

4-16 



4-l'5 Isotropie Case Identified. The motivation behind developing the 

homogeneous, isotropic solution using the full anisotropic methodology was to be able 

to check the result and accuracy of the solution. The answer from the single-cell tor- 

sion solution (see Chapter III) will serve as a 'yardstick' for the result obtained from the 

homogeneous, single-cell torsion solution. 

4-2    Non-homogeneous Anisotropic Single Cell Beam 

4.2.1 Considerations. The definition of non-homogeneous cross-section in 

this context means that the coupling elastic constant ßi-, and therefore 012 are functions 

of the path length coordinate s. Due to the non-zero (and also not 90 degrees) composite 

fiber orientation angle 0, the elastic coupling constant ß% will change sign as the fiber 

angle changes sign with respect to the z structural axis. That is, the angle 9 between the 

structural axis z and the principal fiber direction is greater than zero if the fiber is rotated 

with respect to the z axis in a positive sense in the right-handed coordinate system. The 

positive rotation is defined as the direction of the vector cross product of these two axes 

that define the plane of the rotation angle 6. If the fiber is wound continuously around the 

box beam we have: 

> 0    :    so < s < si 

> 0    :    s\ < s < S2 
hi (4.60) 

< 0    :    s2 < s < S3 

< 0    :    S3 < s < Si 

where the limits Sj are identified by Eqn. (4.3). 
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4-2.2 Analysis. Because the method of analysis outlined in Section 4.1 is 

derived for a fully anisotropic case, then applied to an isotropic example, all the steps 

outlined in that section apply to the current, non-homogeneous, anisotropic solution. In 

Eqn. (4.40) we found the integrals that define Q\, Q2, and Q3. In this case, these constants 

are not zero, because the elastic coupling constant ß2 is not equal to zero. This comes from 

the fact that the compliance matrix S is fully populated; therefore, a2 = Su ¥" 0. Because 

ai is always non-zero, using Eqn. (4.9), the constant ß2 is defined and non-zero. 

Recall that up until Eqn. (4.52), none of the formulas involve ß2\ therefore, the results 

obtained in Section 4.1 remain valid. From Eqn. (4.40) we have 

q0§ß2ds-e'Q§ ai{s)ß2ds + Kx§ a2(s)ß2ds + Ky § a$(s)ß2ds        =   Qx 

qo§yß2ds-e'0§yal(S)ß2ds + K'x§ya2(s)ß2ds + K'Jya3(s)ß2ds    =    Q2        (4-61) 

q0§ xß2ds-e'0§xai(s)ß2ds + Kx§ xa2{s)ß2ds + K'y § xaz{s)ß2ds   =    Q3 

which we can write in matrix notation as 

S              \ 

en Cl2  Ci3 C14 Qi 

C21 C22     C23 C24 < 
4 

> = < Q2 

C31 C32  C33 C34 
K'y 

(4.62) 
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where the elements of the c matrix are now defined as 

cn = f/32ds      ci2 = -§ai(s)ß2ds     ciz = § a2{s)ß2ds     ci4 = § a3(s)ß2ds 

c2\^§yß2ds   c22 = -§ yai{s)ß2ds   c23 = § ya2(s)ß2ds   c2i = § ya3(s)ß2ds    (4-63) 

c3i = fxß2ds   C32 = -§xai(s)ß2ds   c33 = § xa2(s)ß2ds   cZi = § xa?,{s)ß2ds 

Finding c^ by the path integrals requires some clarification. For example, C23 is summed 

clockwise around the perimeter, starting from s = 0. For each consecutive side of the 

trapezoid, we must use the corresponding expression for a2(s). Therefore, the constant C23 

is given by 

C23 
JO 

^A(s-Td) + i(/l2 + /il) ß2a2(s)ds + 

rs2 1 
+ I    (2Td -s + -h2)ß2a

r
2 {s)ds + 

J S\ 

/■S3 + J 
J S2 

+ r4(S-4Td-/i2-^i)(-/32)a2(S)ds 
Js3 

l 

^_^(3rd_s + /l2)+l(/l2+/il) (-ß2)a
b

2(s)ds + 

(4.64) 

where the limits of integrations Sj are given by Eqn. (4.3), and the superscripts on a2(s) 

refer to the top, right, bottom, and left sides of the trapezoid, respectively. Observe that 

the sign of ß2 changes on the bottom and the left sides of the trapezoid. This is the effect 

of the non-homogeneous construction, when the bottom side is the mirror image of the 

top side, that is, the fiber orientation angle on the bottom surface (with respect to the 

right-handed structural coordinate system) is equal and opposite to that of the top surface 

[17]. For the same reason, the sign of ß2 changes from the right side to the left side. The 

solution for the rest of the c matrix follows the same procedure, without exceptions. 
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4-2.3     Rate  of Twist. The rate of twist of the homogeneous single-cell 

section was developed in Section 4.1.4. Equations (4.50) and (4.53) remain valid in this 

case, except now we must account for the constants c^ as well. Because the functions Qi 

are not zero, we first need to solve for e0, Kx, and Ky. Prom Eqn. (4.41) we have 

'          > " ' 

eo an «12 ai3 P-Qi 

Kx 
>  = 021 a-22 023 < -Mx - Q2 

Ky Ö31 «32 «33 -My - Qs 

(4.65) 

where Qi are given by Eqn. (4.62). Once we perform the matrix multiplications, we can 

substitute Qi into Eqn. (4.41) and obtain the expressions for eo, Kx, and Ky. The final 

format of Eqn. (4.65) will be 

e0 = an(P - Qx) - a12(Mx + Q2) - al3(My + Q3) (4.66) 

Kx = a2i{P - Qx) - a22{Mx + Q2) - a23(My + Q3) (4.67) 

Kx = a31(P - Qx) - a32{Mx + Q2) - a33(My + Q3) (4.68) 

Now that eo, Kx, and Ky are given by Eqns. (4.66) through (4.68), e0, K'x, and K'y are 

determined by Eqn. (4.42), the constants c^ are given by Eqn. (4.63), the constants di 

are known by Eqns. (4.54) through (4.57), we can write the rate of twist for the non- 
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homogeneous, anisotropic, single-cell section as 

(4.69) = 7TT (-eocn + Kxc2i + KyCn + q0di + e'0d2 + K'xd3 + K'ydA) 
dz     2A 

4-3    Discussion 

To evaluate Eqns. (4.8) through (4.69) simultaneously for the given geometry is 

a formidable as well as lengthy task. The evaluation of the full and the partial path 

integrals could easier be done by using symbolic solvers. The symbolic results of Eqns. (4.8) 

through (4.69) were entered into a Matlab subroutine called ANISOTORSION_COMPZ 

that calculates the tip twist angle of the non-homogeneous (see Section 4.2) anisotropic, 

single-cell, closed-section box beam. This code can also be used to calculate the tip twist 

of a homogeneous anisotropic beam, since in this case the coupling constant ß2 is zero (see 

Section 4.1.3.2). 

Another Matlab subroutine called LAYUP [23] was applied in order to calculate 

the engineering properties of the fully anisotropic composite-laminate, single-cell, closed 

section box beam, so that the stiffness and compliance matrices of the laminae in the 1-2 

principal axes can be transformed into the x-y-z structural axes of the laminate, and sent 

to the subroutine ANISOTORSION.COMPZ. 

A driver program called COMPL_ANISO_COPMZ was written in order to define the 

material properties in the 1-2 principal axes of the anisotropic composite lamina materials 

of choice. All three subroutines and programs are listed in Appendix C. 
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V.   Induced Strain Actuation 

5.1     Single-Cell Beam with PZT Lamina 

5.1.1 PZT-Composite Lay up. In order to produce induced strain in the 

top and the bottom surfaces of the single-cell box beam, a single layer of continuous-sheet 

PZT lamina is incorporated in the composite laminate of the top and the bottom surfaces 

of the beam as shown in Figure (5.1). In addition to the assumptions made in Section 4.1.1, 

it is assumed that the PZT layer is perfectly bonded within the host structure, that is no 

slip, disbond, or shear-lag is accounted for. The PZT lamina, when used as an actuator 

A   y (Structural Axes) 

>   x 

Figure 5.1     Torque Box with Embedded Piezoelectric Lamina 

under tension, pulls the host structure inward; when under compression, it pushes the 

host structure outward. If the top PZT lamina is subjected to an electric field that creates 

compression, while the bottom PZT lamina experiences tension, the entire single-cell beam 

will be subjected to a pitching moment about the negative z structural axis. This way 

the beam is torqued nose up, and the angle-of-attack increases.  If the electric fields are 
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switched on the PZT laminae, the moment changes direction, and the beam is subjected 

to a positive torque that pitches the beam nose down. See Figure (5.2) for a simplified 

representation of the PZT actuation of a generic (geometry is not related to the simplified 

trapezoid section) host structure. 

'.Äetotor 

€<»p«ii®ö 

Tßiiioa 

Figure 5.2     Piezoelectric Lamina Configuration [12] 

To achieve high PZT actuator effectiveness, a PZT lamina with high piezoelectric 

constant (strain coefficient) d^ must be selected. If c/33 of the PZT is small, a large 

voltage is required to produce strain in the PZT. If c/33 is large, a small amount of voltage 

is sufficient to produce the necessary strain [9]. The PZT must also have high Young's 

modulus of elasticity E compared to the host structure, so that a large fraction of the 

strain produced by the electric field can be transferred to the host structure [9]. 

Piezo-fiber composites are becoming more readily available, as well as less expensive. 

For this study, two PZT fibers were considered, with almost identical material properties. 

The first PZT lamina selected is an Active Fiber Composite (AFC) PZT 5H fibers with 

thermosetting epoxy resin matrix and etched copper/Kapton interdigitated electrodes. A 
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Etched 
nterdigital 

Electrode 

Epoxy 
Matrix 

Piezoceramic 
Fiber ■•sS0^^§f0am ;si* - 

Poling Direction 

Figure 5.3     Diagram and Cross-section of the AFC Lamina [5] 

Table 5.1     ] PZT-Fiber Composites 
Fiber Type Ei 

(Msi) 
E2 

(Msi) 
G12 

(Msi) 
^12 t 

(in) 
^33 

(pm/V) 
«^31 

(pm/V) 

AFC Lamina 
G-1195 PZT 

4.6786 
5.4389 

2.4173 
2.0305 

0.5802 
0.5511 

0.30 
0.30 

0.0065 
0.0080 

180 
200 - 400 

-50 
O.W33 

representative example of the AFC PZT is illustrated in Figure (5.3). The other is a 

generic piezo-fiber composite from reference [3]. The material properties of the two PZT 

composites are summarized in Table (5.1). 

Before attempting to derive the torsional formula for this PZT-composite beam, 

we have to incorporate the PZT engineering properties into the those of the composite 

laminate alone. We achieve this by modifying the Matlab routine used for calculating the 

engineering properties of the laminate alone so that it accounts for the single ply of PZT. 

For sake of simplicity, but without any loss of generality, the PZT lamina was applied to 

the center of the laminate by replacing the middle composite layer. 

5.1.2     Constitutive Relations. The plane stress constitutive relations 

(strain-stress) of Section 4.1.2 have to be modified to account for the PZT layer, that 

may not have the same material properties as the composite lamina. Therefore, we write 
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Eqns. (4.4) through (4.5) with the PZT strain (ep), and the PZT shear (7^) in the material 

principle directions 

e = a\N- + a2q- + ep (5.1) 

1 1 
7 = a2N- + a±q- + 7P (5.2) 

Using the same argument preceeding Eqns. (4.6) and (4.7) we have 

N = ß1et + ß2q-ßiept (5.3) 

7 = -ß2e + ß4q- + ß2ep + 7p (5.4) 

where all the constants evaluated to be the same as defined in Eqns. (4.8) through (4.10). 

Writing the full anisotropic strain-stress (constitutive) equations for plane stress and com- 

paring them to Eqn. (5.1), we obtain the same results as in Eqns. (4.14) and (4.16). 

Therefore, the addition of the PZT term in the Eqns. (5.1) and (5.2) did not change our 

coupling coefficients defined previously in Eqns. (4.8) and (4.10). 

5.1.3    Analysis. 

5.1.3.1     Preliminary Considerations.      By establishing the same differ- 

ential equations of equilibrium considered in Section 4.1.3.1, and using Eqns. (4.17) and 
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(4.20), we obtain the expression for the force per unit length N, namely 

N = fti(e0 - yKx - xKy) + ß2q - ßiep t (5.5) 

Differentiating with respect to z, we get 

^ = M4 - VK - xK'y) - ßxe'pt (5.6) 

where the derivative of the piezoelectric strain with respect to the spanwise coordinate z 

is zero as long as uniform voltage is applied to the PZT lamina. That is 

e' = ^ = 0 (5-7) p dz 

With this assumption, we obtain the expression for dN/dz 

dN 
~dz~ 

= ß1t(e'0-yK'x-xK'y) (5.8) 

that is identical to the result derived in Section 4.1.3.1, Eqn. (4.22). Therefore, the rest of 

the derivation for Eqns. (4.24) through (4.31) is as outlined before. 

5.1.3.2 Equations of Static Equivalence. The cross sectional loadings 

will now have to be modified to account for strain actuation as well. Equations (4.32) 

through (4.34) are written in a form 

P= j>Nds= i\ßit{tQ - yKx - xKy) + ß2q - ßiept]ds (5.9) 
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M, = -& yNds = -& y[ßit(e0 - yKx - xKy) + ß2q - ßiept]ds (5.10) 

Mt. = - * xNds = -f x\ßit(eo - yKx - xKy) + ß2q - ßiept]ds (5.11) 

that can be written as (see also Eqn. (4.38)) 

" r         N f 

&11     &12     &13 «0 P-Qi + Zi 

&21     &22     &23 < if* > = < -Mx -Q2 + Z2 

hi     ^32     ^33 -My -Q3 + Z3 

(5.12) 

where the [b] matrix is given by Eqn. (4.39), and the quantities Z{ are given by 

Z\ = § ßieptds       Z2 = §yßi€ptds       Z3 = § xßieptds (5.13) 

The full path integrals of Eqn. (5.13) must be evaluated the same way we treated the path 

integral in Eqn. (4.58). In doing so we find 

Zi = 4fttaepTd       Z2 = 0       Zz = 0 (5.14) 

Evaluating the derivatives of Eqn. (5.14) with respect to z we arrive to 

Z[=0       Z2 = 0       Z'3 = 0 (5.15) 
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After rearranging Eqn. (5.12), and differentiating, we get 

fL 

K. 
\   " / 

'       > 

Oil Ol2 «13 0 

Ö21 «22 «23 
< Vy> 

«31 ^32 Ö33 vx 

(5.16) 

which is identical to Eqn. (4.42). 

5.1.4     Rate of Twist.       In light of the results of Section 5.1.3, all equations 

apply until Eqn. (4.50), which is reproduced here as 

cty        1 
dz Jlf^s)ds (5.17) 

where the shear strain is given by 

7 = a2N- + a4g- + 7P (5.18) 

This can also be written as 

7 = -ß2e + ß4q- + ß2ep + -yp (5.19) 

which is Eqn. (5.4) from Section 5.1.2. Substituting from Eqns. (4.20) and (4.24), we get 

7(s) = -ft(e0 - yKx - xKy) + ß4 [q0 - e'0ai(s) + K'xa2(s) + K'ya3{s)] - + ß2ep + 7, 

(5.20) 
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which modifies Eqn. (4.53) to 

dz ~ 2A 
-e0cu + Kxc2i + Kycn + q0di + e'0d2 + K'xd3 + K'yd4 + cn j> epds + j> 7pds 

(5.21) 

where the constants di are as given by Eqns. (4.54) through (4.57). The full path integral of 

the piezoelectric strain jp is evaluated the way it was demonstrated for C23 of Eqn. (4.64). 

Assuming PZT lamina only in the skins, we obtain 

17p(s)ds = 4jpTd (5.22) 

<f ep(s)ds = 4epTd (5.23) 

where ep and 7P is the PZT strain and shear in the structural axes, respectively. For a 

homogeneous cross section, all c^ are zero, therefore 

^ = ^ Mi + e'0d2 + K'xd3 + K'yd4 + AlpTd) (5.24) 

5.2    Non-homogeneous PZT-Composite Beam 

5.2.1 Analysis. For a non-homogeneous cross section, we follow Section 4.2. 

Because all Qj's are still defined in the PZT composite case the same way they were in the 

composite-only case, Eqns. (4.60) through (4.63) still hold. 

5.2.2 Rate of Twist. Recall that for the non-homogeneous cross section, 

Cij ^ 0.   However, Eqn. (4.65) is now extended with the summation of the longitudinal 
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strain terms, Z{. That is, 

K* 

Ky 
V / 

«11 «42 Ol3 

«21 «22 Ö23 < 

Ö31 0132 0.33 

P - Qi + Zi 

-Mx -Q2 + Z2 

-My   -Q3   +   Z3 

(5.25) 

where Zi are given by Eqn. (5.13).   Using the results of Eqn. (5.14) we can evaluate 

Eqn. (5.25) and get 

e0 = au(P -Qi + Zx) - a12{Mx + Q2) - a13(My + Q3) (5.26) 

Kx = a21{P -Qi + Zx)- a22{Mx + Q2) - a23{My + Q3) (5.27) 

Ky = o3i(P - Qi + Zx) - 032^ + Q2) - a33(My + Q3) (5.28) 

where Z2 = Z3 = 0 as per Eqn. (5.14). Now that e0, Kx, and Ä"y are given by Eqns. (5.26) 

through (5.28), e'0, K'x, and i^ are determined by Eqn. (5.16), the constants c^ are given 

by Eqn. (4.63), the constants di are known by Eqns. (4.54) through (4.57), we can write 

the rate of twist for the non-homogeneous, anisotropic, single-cell section as 

da = 2Ä (-eoCu + Kx°21 + KyCn + qodl + e'°d2 + K'xds + K'ydi + 4ePTdcn + 4>Td) 

(5.29) 
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5.3    Determining the PZT Strain Tensor 

Using Eqn. (5.29) we can determine the angle of twist due to PZT actuation of the 

non-homogeneous, anisotropic, single-cell beam with PZT actuator lamina embedded in 

the laminate center of the top and bottom skins. All variables and coefficients of Eqn. (5.29) 

are known through the derivation presented in Chapters IV and V, except the PZT strain 

ep, and the PZT shear 7p. Before calculating the twist angle due to an applied electric 

field (Voltage), we need to find ep and jp of the PZT. Because the PZT actuator lamina is 

at an angle with respect to the material axes of the torquebox, we first need to determine 

ep and 7P in the PZT lamina principal axes, then transform these strain and shear to the 

structural axes. 

For the sake of preserving the conventions for the directions of piezoelectric actuation, 

let's rename our principal 1-2-3 (fiber-transverse-out of plane) composite-fiber material 

directions to 3-1-2 (fiber-transverse-out of plane) composite-PZT material directions, as 

demonstrated in Figure (5.4). This way we can retain the subscripts on all the piezoelectric, 

and electric field coefficients to be introduced in the following section. 

Top Etch ed C opper/ 
Kapton Electrode Fiter 

i 
*i 

X, 

* .   Bottom Etched 
" * -   " >- p0|jna Co ppervKeptan 

Direction Becbode 

Figure 5.4     Diagram, and Principal Axes of the AFC lamina [5] 
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5.3.1     Piezoelectric Strain Coefficients.       According to the notation of 

IEEE Standard 176-1978, the linear, coupled electro-mechanical constitutive relations are 

D   =    eTE + dT 

S   =   dtE + sET 

(5.30) 

where the independent variable stress (T) and electric field (E) and the dependent vari- 

ables strain (S) and electric displacement (D) are related by the dielectric coefficient (eT), 

piezoelectric coefficient (d), and the compliance matrix (SE) [8]. For piezoelectric mate- 

rials of unit thickness the relation between actuation strain and the applied electric field 

(Ei, E2, Ez in the principal 1-2-3 directions respectively) is given by 

A = 

0 0 ^31 

0 0 <^31 •        ^ 

Ei 
0 0 ^33 

< Ei * 
0 di5 0 

E3 

G?15 0 0 

0 0 0 

(5.31) 

The coefficients dsi, d$3, and dis are the piezoelectric strain coefficients (or constants). 

The constant dss characterizes the strain in the material principal fiber direction, and the 

constant d%i characterizes the strain in the material transverse direction. In accordance 

with the assumptions and restrictions made on the analysis in Section 4.1.2, and to simplify 
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the relations of Eqn. (5.31) we set 

E-\ = Eo — 0 (5.32) 

Therefore, the PZT strain tensor £1,2,3 in the principal directions is expressed by 

£1,2,3 

^31 0 0 

0 ^31 0 

0 0 ^33 

Eo, (5.33) 

where E^ is given by the applied voltage divided by the PZT lamina characteristic distance. 

If the piezoelectric constants are of opposite signs, the applied electric field creates 

extension in one direction (positive constant), and contraction (negative constant) in the 

other. If the constants are of the same sign, the electric field will induce extension or 

contraction simultaneously in both principal directions. For the 45-degree PZT layup used 

in the study (see Figure (5.2)), a PZT lamina with positive 0^33, and negative efai could 

generate torsion of the beam more effectively, since the mechanical strains on the top 

and bottom surfaces are of the opposite signs. Which beam is going to produce more 

angular twist; however, is also going to depend on the numerical values of the piezoelectric 

coefficients. The higher the coefficient, the greater the induced strain. 

For the AFC lamina, the piezoelectric coefficients d^ and d^i are given as material 

parameters. For the G-1195 PZT lamina, a single constant is inadequate to relate strain 

to the electric field. From a series of elastically-constrained piezoceramics tests, it was 

determined that the value of ^33 depends on the level of induced strain [8].  This is the 
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strain that appears in the PZT lamina when it is embedded in a structure, and it is due to 

the piezoelectric actuation. Therefore, a secant piezoelectric coefficient will be defined as 

<*33 =    W (5'34) 

where Ai is the actuation strain (that physically causes induced strains, and can be due 

to piezoelectricity, electrostriction, or even thermal expansion) in the transverse direction. 

An approximate linear relation can be set up between the induced strain and the applied 

electric field, using Fig A.l from reference [10]. Another linear approximation for the 

appropriate value of the piezoelectric constant can be found from Figure 7, of reference 

[8]. The value of the transverse piezoelectric constant dzi can be approximated as 10% of 

G?33 . The maximum value for Ai is selected as the maximum strain so that depoling of the 

PZT fibers is avoided [3]. 

Depoling of the fibers can occur if the applied voltage V becomes greater than the 

coercive field Ec. During the manufacture of piezoceramics, a coercive electric field is 

applied across the fibers to align the PZT crystals into an initial polarization. If the 

applied voltage during operations is greater than this electric field in the opposite direction, 

depoling of the fibers can take place, and repoling in the opposite direction will occur. If the 

applied field is aligned with the initial poling direction, depoling will not take place even 

if the applied electric field exceeds the coercive field. Therefore, the maximum voltage 

applicable to the AFC lamina will be ±1000 V [5]. For the G-1195 PZT lamina, the 

applicable voltage per thickness is ±750-1000 Vmm [8],[15]. Considering the thickness of 
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the G-1195 PZT lamina listed in Table (5.1), the maximum voltage that can be applied is 

±200V. 

Now that all the pieces of information about the piezoelectric coefficients in the 

material principal axes are given for both PZT laminae through Table (5.1) and Eqn. (5.34), 

using the appropriate coordinate transformations we find the PZT strain tensor est in the 

structural directions. 

5.3.2 PZT Strain Tensor Transformation. Figure (5.5) illustrates 

the coordinate rotation from the material principal directions into the structural directions. 

The principal fiber direction of the PZT-composite is represented by the principle direction 

3, and the structural spanwise direction is given by z. The principal axes 3-1-2 are rotated 

3 (Princiial Axes) 

Z (Structural Axes) 

Figure 5.5      PZT Strain Tensor Coordinate Transformation 

by angle —9 about the 2 axis into the structural axes.  Then, the principle-to-structural 
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transformation (a '-2' rotation) matrix C is given by 

C 

cos(9)     0   sin(9) 

0 1        0 

-sin(6)   0   cos(6) 

(5.35) 

The principle-to-structural strain tensor transformation, using Eqns. (5.33) and (5.35) is 

given by 

est C 

d3i     0       0 

0     d3i     0 C 

0      0     d33 

Ez (5.36) 

After the transformation, we obtain the PZT strain tensor, as well as the PZT strain and 

shear ep and jp in the structural axes 

e«t 

" 

£x 0 €xz 

0 ev 0 

zx 0 e* 

(5.37) 

where 

ez = eP    =    [d3isin2(6) + d33cos2(9)] E3 

txz = tzx = Ip   =   [d3icos(9)sin(6) - d33sin{d)cos(9)] E3 

(5.38) 

are to be used in Eqn. (5.29). 
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5.4    Discussion 

5.4-1 Composite-PZT Beam Torsion. Evaluating Eqns. (5.9) through 

(5.38) — simultaneously for the given geometry and composite-PZT construction — is a 

formidable as well as lengthy task. The evaluation of the full-, and the partial-path integrals 

could easier be done by using symbolic solvers. The symbolic solutions of Eqns. (5.9) 

through (5.29) were found using MathCad, and were entered into a Matlab subroutine 

called ANISOTORSIONJPZT that calculates the tip twist angle of the non-homogeneous 

(see Section 4.2) anisotropic, single-cell, closed-section box beam with a single layer of PZT 

lamina in the geometric center of the composite laminate, subjected to a uniform cross 

sectional-moment about the structural z axis. This code can also be used to calculate the 

tip twist of a homogeneous anisotropic beam subjected to the same conditions, since in 

this case the coupling constant ßi is zero (Section 4.1.3.2). 

The Matlab subroutine called LAYUP of Section 4.3 is used by the program ANISO- 

TORSION_PZT without modifications. 

A driver program called COMPL_ANISO_PZT was written in order to define the 

material properties in the 1-2 principal axes of the composite and PZT lamina materials 

of choice. It also defines the single-cell torquebox geometry obtained from the program 

AREA of Chapter II, and establishes the desired loading conditions. Both codes are listed 

in Appendix D. 

5.4.2    PZT Strain Actuation. The Matlab subroutine called ANISO- 

TORSIONJPZT_E calculates the tip twist angle of the non-homogeneous (see Section 4.2), 

anisotropic, single-cell, closed-section box beam with a single layer of PZT lamina in the 
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geometric center of the composite laminate, subjected to a uniform electric field E% ap- 

plied in the principal PZT fiber direction due to an applied voltage V. The twist angles are 

calculated for a range of fiber orientation angles, input by the user. This code can also be 

used to calculate the tip twist of a homogeneous anisotropic beam subjected to the same 

conditions, since in this case the elastic coupling constant ßi is zero (see Section 4.1.3.2). 

The program ANISOTORSIONJPZT_E uses the LAYUP subroutine of Section 4.3 

without modifications. 

The transformation of the PZT strains and shears in the principal axes into the strains 

and shears in the structural axes is accomplished by the subroutine TRANSFORM. Its 

inputs are the PZT principal strain tensor, and the PZT rotation angle with respect to the 

structural axes. It outputs the strain tensor in the structural axes. 

A driver program called COMPL_ANISO_PZT_E was written in order to define the 

material properties in the principal axes of the composite and PZT lamina materials of 

choice. It also defines the piezoelectric properties of the PZT lamina in the 3-1 principal 

axes and establishes the desired loading conditions. All three programs and subroutines 

are listed in Appendix E. 
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VI.   Results and Discussion 

6.1    Single-, and Three-Cell, Isotropie Beam 

As was discussed in Chapter III, the Matlab code SHEARFLOW3CELL was run 

in order to gather data on the concentrated torsional moment required, and the resulting 

shear flows in the spars and skins of the single-, and three-cell closed section, isotropic 

(aluminum) torque box. The material properties of the 2024-T3 aluminum are listed in 

Table (6.1). The code was run with the original geometric properties of the 2-D profile, 

obtained from the Matlab code AREA (see Appendix A) for angles 2 to 10 degrees with 

2-degree increments. Interested users can of course change the imposed twist angles and 

investigate the relationship between the angle of twist, moment and shear flows required. 

For the given angles, Table (6.2) summarizes the results. The tabulated values of the 

required moments versus twist angles are also shown (and the linear relationship can be 

better observed) in Figure (6.1). Comparing the moments required to generate the angle 

of twist for the single-cell beam to that of the three-cell beam it is evident, that in order to 

generate a given angular twist, a larger moment is required for the three-cell beam than for 

the single-cell beam. This is due to the increased torsional stiffness (see Eqn. (3.29)) of the 

multi-cell beam, compared to that of the single-cell beam. This is the reason why multi-cell 

Table 6.1     Isotropic Material Properties 
Aluminum 2024 T3 

Young's Modulus 
E (Msi) 

Shear Modulus 
G (Msi) 

Poisson's Ratio 
V 

10.4 3.86 0.33 
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Table 6.2     Single- , and Three-Cell Torque Box Results 
Single Cell Three Cell 

Twist Angle Shearflow Moment ql q2 q3 Moment 
(deg) (lb/in) (ft-lb) (lb/in) (lb/in) (lb/in) (ft-lb) 

2.0 170.6 6517 129.7 165.9 63.9 8733 
4.0 341.2 13033 259.3 331.7 127.7 17467 
6.0 511.8 19550 388.9 497.6 191.6 26200 
8.0 682.4 26067 518.6 663.5 255.5 34934 
10.0 853.0 32583 648.3 829.4 319.3 43667 

sections are more resistive to torsion. Another important observation from Table (6.2) is 

3.5 

2.5- 

2 - 

A   Single-Cell Beam 
a   Three-Cell Beam 

1                 1 
5 6 7 

Twist Angle (deg) 
10 

Figure 6.1     Required Moments for Single-, and Three-Cell Beam Torsion 

presented in Figure (6.2). Here, the shear flows generated in the single-cell section, as well 

as the shear flows generated in all three sections of the three-cell beam are plotted against 

the imposed twist angles. It can be seen that for a given twist angle the highest skin shear 

flow is generated in the single-cell beam. This is due to the fact that all the shear is carried 

by this one section. All the shear flows in the three-cell beam are lower, because a larger 
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Table 6.3     Simplified Single-Cell Torquebox Results 
Single Cell 

Twist Angle Shearflow Moment 
(deg) (lb/in) (ft-lb) 

2.0 140.3 4404 
4.0 280.5 8808 
6.0 420.7 13213 
8.0 561.0 17617 
10.0 701.2 22021 

combined area of three cells is available to resist torsion. The nose and the tail sections 

of the three-cell beam enclose the smallest areas (see Table (2.10)), and the shear flows 

generated will be the least here. The shear flow in the midsection of the three-cell beam 

is less, but almost equal to that of the single-cell beam. Because the enclosed area of the 

mid section is the largest of the three cells, it will take up most of the shear load generated 

by the torsion. 
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T      1                               1 

A   Single-Cell Beam 
D   Three-Cell Beam, Nose Section 
O   Three-Cell Beam, Mid Section 

"    <>   Three-Cell Beam, Tail Section 
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Twist Angle (deg) 

10 

Figure 6.2     Shear Flows for Single-, and Three-Cell Beam Torsion 
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To check the accuracy of the solution derived in Section 4.1, it is necessary to use the 

simplified torquebox geometry calculated in Section 2.5.2 for obtaining the moments and 

shearflows for a given twist angle. See Table (2.5) for the dimensions and wall thickness 

of the simplified torquebox. Running the Matlab code SHEARFLOW3CELL (see Ap- 

pendix B) and concentrating on the results for the (now simplified dimension) single-cell 

torquebox, we obtain the moments and shearflows, listed in Table (6.3). 

6.2     Generalized Torsion Solution 

6.2.1 Single-Cell, Isotropie Beam. In order to check the accuracy of 

the non-homogeneous, anisotropic solution developed in Section 4.2 for the torsional de- 

flection of the single-cell torquebox, we can apply it to the isotropic, homogeneous case, 

developed in Section 4.1. The scope of the analysis covered only the applied concentrated 

cross-sectional moment, and it did not consider the other distributed forces and moments 

that may act upon the section (see Figure (4.1)). As was discussed in Section 4.1.3.2, in 

case of the homogeneous isotropic beam, the coupling elastic constants /?2 = 0, and a<i = 0. 

The Matlab program COMPL_ANISO.COPMZ, along with its subroutine ANISOTOR- 

SION.COMPZ (see Appendix C) was run for the isotropic (aluminum) case by setting the 

material properties to those of isotropic aluminum and by using the moments required to 

achieve the angle of twists from Table (6.3). The results were then tabulated in Table (6.4) 

along with the results obtained from the shearflow solution (see Table (6.3)). 

The amount of twist calculated via Libove's method for the isotropic single-cell beam 

corresponded well to the angles obtained from the shearflow solution using the Matlab 
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Tab: e 6.4     Libove's Method for Single Cell Isotropie Be 
Shearflow Results Libove's Method 

Applied Moment Twist Angle Twist Angle 
(ft-lb) (deg) (deg) 

4404 2.0 1.938 
8808 4.0 3.875 
13213 6.0 5.813 
17617 8.0 7.750 
22021 10.0 9.688 

code SHEARFLOW3CELL (Appendix B). While the trend conserves the linearly elastic 

assumption made in Section 4.1.1 and demonstrates a linearly increasing deflection angle 

with increasing applied moment, it is only 3.1% less than the deflection angles set for the 

shearflow solution. 

6.2.2 Single-Cell, Anisotropie Beam. To verify the accuracy of the 

fully anisotropic solution of Section 4.2 the results were compared to the linear case derived 

and experimentally tested by Romeo, et. al. in reference [24]. The authors also expanded 

the theory to include non-linear twist effects due to the non-linear effective shear modulus 

of the skin panels [24]. They used a graphite/epoxy, single-cell, rectangular cross-section, 

composite torquebox under pure torsion. The M40/914, [452/ - 452/02/902]s laminate was 

applied once on the top and bottom skins, and twice on the main and rear spars. The 

geometric and material properties of the torquebox are listed in Table (6.5). This geometry 

was substituted into the Matlab code COMPL_ANISO_COMPZ, which was run with the 

subroutine ANISOTORSION_COMPZ for several values of the applied moments listed in 

reference [24]. The results — tabulated in Table (6.6) — were in good agreement with the 

results published by Romeo. 
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Table 6.5 Composite Material Properties and Geometry 
Carbon/Epoxy M40/914 Vicotex 

Ei (Msi) E2 (Msi)    Gvi (Msi)     un     L (in)    H (in)    tskin (in) 

30.4 1.0              0.6         0.31     28.35       5.24          0.08 

Table 6.6 Composite B earn Torsion Verification. 
Romeo's Method Libove's Solution 

Applied Moment Skin Thickness Twist Angle Twist Angle 
(ft-lb) (in) (deg) (deg) 

2950 0.08 0.210 0.235 
3688 0.08 0.275 0.294 
4425 0.08 0.320 0.353 

Having verified the accuracy of the torsion solution developed in Chapter IV by ap- 

plying it to both the isotropic and anisotropic case, the program COMPL_ANISO_COPMZ 

was run for a fully anisotropic case using the original baseline, simplified torquebox dimen- 

sions of Section 2.5.2, by selecting the material properties of the graphite-epoxy composite 

listed in Table (6.7). The code was then run with its subroutines LAYUP, and ANISOTOR- 

SION_COMPZ in order to calculate the engineering properties of the composite laminate 

in the structural axes, to determine the composite compliance matrix S in the structural 

axes, and to calculate the angle of twist of the anisotropic, composite, single-cell beam. 

A composite laminate of Carbon/Epoxy (AS4/3501-6) with arbitrary lamina fiber orien- 

tation angles of [0/ 9 /45 /-0 /0] was chosen, with a standard lamina thickness of 0.005 

inch. The relevant material properties of the lamina are included in Table (6.7); how- 

ever, for more information on the material, please refer to reference [11]. By varying the 

Table 6.7     Composite Material Properties 
Carbon/Epoxy AS4/3501-6 

Young's Modulus 
Ei (Msi) I E2 (Msi) 

20.6 1.50 

Shear Modulus 
Gi2 (Msi) 

LÖ4 

Poisson's Ratios 
^12    I ^21 
0.27 0.02 
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Table 6.8      Composite Beam Torsion. M=4404 ft-lb. 
Composite Total Thickness Twist Angle 
Laminate (in) (deg) 

[0 15 45 - 15 0] 0.025 4.940 
[0 30 45 - 30 0] 0.025 3.651 
[0 45 45 - 45 0] 0.025 3.513 
[0 60 45 - 60 0] 0.025 4.132 
[0 75 45 - 75 0] 0.025 4.950 
[0 90 45 - 90 0] 0.025 5.340 

composite lamina angle 9 from 0 to 90 degrees with 2-degree increments, several different 

fiber-orientation laminates were run to investigate how the different laminae angles affect 

the torquebox twist angles. Table (6.8) summarizes the tip twist angles of several selected 

laminate construction beams subjected to M=4404 ft-lb of cross-sectional moment. Any 

other distributed or concentrated forces and moments acting on the beam segment were 

assumed to be zero. The results are also plotted in Figure (6.3) showing the familiar pat- 

tern of the change in the angle of tip-twist due to the change in the single lamina angle 6. 

Comparing the results shown in Tables (6.4) and (6.8) we come to the conclusion 

that the model composite laminate construction torquebox — subjected to the same cross- 

sectional moment — twists more than the isotropic (aluminum) beam. This is due to 

the fact that while the graphite-epoxy composite laminate has greater stiffness than the 

aluminum, we only used a five-ply, 0.025 inch thick composite laminate, compared to the 

aluminum beam wall thickness of 0.072 inch, 0.049 inch, and 0.048 inch for the main 

spar, rear spar, and skin thickness respectively, which resulted in lower torsional stiffness 

compared to the aluminum beam.    The composite wall thickness can be increased by 
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increasing the number of laminae or the laminates up to the point where it satisfies the 

design stress requirements without a single lamina failure. 
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Figure 6.3     Twist Angles for the All-Composite Torquebox 

6.2.3 Single-Cell, Anisotropie Composite-PZT Beam. The Mat- 

lab code COMPL_ANISO_PZT, developed in Section 5.1 to calculate the twist angle of 

the anisotropic composite beam, was modified so that a layer of PZT embedded in the 

geometric center (mid-plane) of the laminate can be accounted for while calculating the 

engineering properties of the laminate in the structural axes. This was achieved by or- 

dering the laminate material properties in the material principal directions into a vector, 

containing the PZT material properties (E,G,^) as an element. Because the PZT layer 

was assumed to be embedded in the symmetric center of the laminate, the PZT material 

properties were placed in the middle of the vector. The two PZT actuator laminae consid- 
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ered were introduced in Section 5.1.1. The mechanical properties of the AFC lamina — in 

form of compliance and plane-stress stiffness matrix — were obtained from a combination 

of experimental stress-strain, and clamped-actuation testing by Bent, et. al. [5]. These 

plane-stress compliance values were used to calculate the material properties of the AFC 

lamina in the principal directions. The material properties of the G-1195 PZT lamina were 

obtained from reference [3], [8], and [10]. The engineering properties of both PZT laminae 

in the structural directions were again obtained via the LAYUP subroutine. For more 

details, please refer to the Matlab code COMPLJ\.NISO_PZT included in Appendix D. 

According to the argument made in Section 5.1.1, the PZT lamina was assumed to 

be at a 45 degree angle with respect to the structural z axis (see Figure (5.2)), simply 

replacing one layer of the graphite/epoxy lamina. Because the engineering properties of 

the composite-PZT laminate are different — in the material 1-2 axes, as well as in the 

structural z-x axes — than those of the graphite-epoxy composite laminate alone, it was 

necessary to calculate all the elastic coupling coefficients separately for the composite and 

composite-PZT hybrid laminate. Therefore, in addition to the compliance coefficients 

«i, ai2, and 0:3 of the composite laminate, we will have ap\, ap2, and aps for the hybrid 

composite-PZT laminate. Similarly, we obtain the values of the elastic coupling coefficients 

ßpi-, ßp2, and /3P3 for the composite-PZT laminate. These coefficients had to be substituted 

in the appropriate locations in all the partial and full-path integrals detailed in Chapter IV. 

These integrals were solved symbolically using MathCad, and the results were transferred 

to the Matlab subroutine ANISOTORSION.PZT. This subroutine, when called by the 

driver program COMPL_ANISO_PZT, calculates the tip twist angle due to a cross-sectional 

moment of M=4404 ft-lb of the single-cell, closed-section, anisotropic torquebox with PZT 
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Table 6.9 PZT-Composite Beam Torsion. M=4404 ft-lb. 
AFC Composite G-1195 PZT 

Composite Total Thickness Twist Angle Total Thickness Twist Angle 
Laminate (in) (deg) (in) (deg) 

[0 PZT 0] 0.0165 18.3149 0.015 19.8341 

[0 15 PZT - 15 0] 0.0265 6.3218 0.025 6.6210 
[0 30 PZT - 30 0] 0.0265 6.7207 0.025 6.8166 
[0 45 PZT - 45 0] 0.0265 6.6154 0.025 6.6587 
[0 60 PZT - 60 0] 0.0265 8.2119 0.025 8.3173 
[0 75 PZT - 75 0] 0.0265 10.4376 0.025 10.7839 
[0 90 PZT - 90 0] 0.0265 11.5805 0.025 12.1206 

actuator lamina embedded in the center layer of the top and bottom skin graphite-epoxy 

composite laminate. The program was run for the same composite laminate construction 

detailed in Table (6.8) with the center 45-degree graphite-epoxy layer substituted with 

one layer of PZT lamina of the same orientation. Again, the two PZT-composite laminae 

used for comparisons were detailed in Section 5.1.1. The fiber orientation angle 0 of the 

graphite-epoxy lamina was varied as before (see Table (6.8)), and the results are tabulated 

in Table (6.9) and plotted in Figure (6.4). 

Both the AFC and the G-1195 PZT-Composite beam demonstrated comparable twist 

angles for identical cross-sectional moment for all values of the changing lamina angle. 

However, both beams — with the PZT layer embedded — exhibited greater tip twist angles 

for a given substrate lamina orientation angle than the composite-alone construction beam. 

This leads to the conclusion that both PZT actuator laminae, when embedded in the center 

of the composite laminate, lowered the beam's torsional stiffness, compared to that of the 

composite-alone laminate, resulting in greater beam tip twist angles. The reduction of 

beam stiffness was expected since the stiffness of both actuator laminae are one fourth of 

the stiffness of the substrate graphite/epoxy, and the shear modulus of both laminae are 
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Figure 6.4     Twist Angles for the PZT-Composite Torqueboxes 

an order of magnitude less than that of the substrate composite. While only static torsion 

is considered, the reduction in torsional stiffness may very well be a desirable effect, since 

a lower electric field is necessary to generate the desired angles. When dynamic effects are 

also considered, lowering the beam's torsional stiffness could significantly lower the wing's 

flutter velocity. 

6.2.4 Single-Cell, Anisotropie, Composite-PZT Beam with Strain 

Actuation. The driver code COMPL_ANISO_PZT was modified in order to account 

for the piezoelectric actuation of the embedded PZT lamina. The actuation was achieved 

by applying an electric field E3 in the PZT lamina poling direction (see Figure (5.3), or Fig- 

ure (5.4)). The piezoelectric strain and shear generated by the electric field was accounted 

for by extending the constitutive relations and re-deriving Libove's method in Section 5.2. 

6-11 



Table 6.10     Strain Actuation Twist Angles - AFC Laminate 
Composite Applied Voltage (V) 
Laminate 100 250 500 750 1000 

[0 15 45 - 15 0] 0.0299 0.0748 0.1495 0.2243 0.2991 
[0 30 45 - 30 0] 0.0270 0.0674 0.1348 0.2022 0.2696 
[0 45 45 - 45 0] 0.0282 0.0704 0.1409 0.2113 0.2818 
[0 60 45 - 60 0] 0.0323 0.0807 0.1615 0.2422 0.3229 
[0 75 45 - 75 0] 0.0375 0.0936 0.1873 0.2809 0.3746 
[0 90 45 - 90 0] 0.0400 0.0999 0.1998 0.2997 0.3996 

The solution was coded as the Matlab subroutine ANISOTORSION_PZT_E. The piezo- 

electric strain tensor in the material principal 3-1 axes was transformed to the structural 

z-x axes by the Matlab subroutine TRANSFORM, using the methods of Section 5.3. 

The Matlab code COMPL_ANISO_PZT_E was run for the AFC and G-1195 PZT 

laminate cases, using several values of the applied electric field E3, and substrate lamina 

orientation angles. The results for the strain actuation of the AFC laminate beam are 

tabulated in Table (6.10), and — using the variable lamina angle 9 as the parameter 

— the tip twist angles were plotted against the applied voltage in Figure (6.5). The 

linear trend is conserved, and the effect of the lamina angle on the tip twist for a given 

applied voltage is conveniently observed. For any given lamina angle 9, an increase in the 

applied voltage increases the beam tip twist angle. For a given applied voltage, the tip 

twist angle decreases until the lamina angle reaches 30 degrees. Further increase in the 

lamina angle increases the tip twist, indicating that the host structure's torsional stiffness 

is reduced when the lamina angle is greater than 30 degrees. To better observe the effect of 

the variable angle lamina, and to more accurately determine the variable substrate angle 

where the minimum twist occurs, the tip twist angles of the AFC laminate torquebox were 

also plotted against the variable lamina angle 9 in Figure (6.6), using the applied voltage 
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Figure 6.5     Twist Angles Due to Strain Actuation - AFC Laminate 

as the parameter. The plot demonstrates how the variable lamina angle affects the tip 

twist for a given value of applied voltage. By inspection, the minimum twist for any given 

applied voltage occurs at approximately 0=33 degrees. Any increase or decrease in the 

lamina orientation angle will result in an increase in the tip twist angle. 

The results for tip torsion, using the G-1195 PZT-composite hybrid laminate, are 

tabulated in Table (6.11). The tip twist angles are greater than those of the AFC laminate 

beam, and they correspond well to the trend observed in Table (6.10). This is partly at- 

tributed to the piezoelectric constants of the G-1195 lamina which are significantly greater 

than those of the AFC lamina (see Table (5.1)). The tip twist angles of the G-1195 PZT 

laminate torquebox are again plotted against the applied voltage in Figure (6.7), using 

the variable substrate lamina angle 6 as the parameter. The linear trend is not conserved 

as before, because the induced strain increase with applied electric field, which in turn 
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Figure 6.6     Twist Angles Due to Strain Actuation - AFC Laminate 

Table 6.11      Strain Actuation Twist Angles - G-1195 PZT Laminate 
Composite Applied Voltage (V) 
Laminate 50 75 100 150 200 

[0 15 45 - 15 0] 0.1184 0.1899 0.2695 0.4533 0.6698 
[0 30 45 - 30 0] 0.0992 0.1590 0.2257 0.3796 0.5609 
[0 45 45 - 45 0] 0.1071 0.1718 0.2438 0.4101 0.6060 
[0 60 45 - 60 0] 0.1340 0.2149 0.3050 0.5130 0.7579 
[0 75 45 - 75 0] 0.1676 0.2688 0.3816 0.6418 0.9484 
[0 90 45 - 90 0] 0.1840 0.2951 0.4188 0.7044 1.0409 

increase the value of the piezoelectric constant in the poling ((I33) direction. For any given 

substrate lamina angle, the tip twist angle increases with increasing applied voltage, while 

for a given applied voltage, the tip twist angle decreases until the lamina angle reaches 30 

degrees. Similar to the AFC laminate case, further increase in the lamina angle increases 

the tip twist, indicating that the host structure's torsional stiffness is reduced when the 

composite lamina angle is greater than 30 degrees. 
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Figure 6.7     Twist Angles Due to Strain Actuation - G-1195 PZT 

The tip twist angles of the G-1195 PZT laminate torquebox were also plotted against 

the variable lamina angle 8 in Figure (6.8), using the applied voltage as the parameter. 

The plot demonstrates how the variable lamina angle affects the tip twist for a given value 

of applied voltage. By inspection, the minimum twist for any given applied voltage occurs 

at approximately 0=33 degrees. Any increase or decrease in the lamina orientation angle 

will result in the increase of the tip twist angle. The recorded tip twist angles for a given 

applied voltage again proved to be greater for the composite lamina orientation angle of 

90 degrees, than at 0 degrees. The same result was observed when using the AFC actuator 

lamina. 
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Figure 6.8     Twist Angles Due to Strain Actuation - G-1195 PZT 

6.3    Discussion 

The results presented for the single-, as well as the three-cell isotropic beam well 

demonstrated the effects of the higher torsional stiffness afforded by the multiple cell 

section, resulting in less tip twist. When less torsional displacement is desired, the multiple- 

cell construction offers better results; however, the enclosed area will be greater, requiring 

a larger structure. The solutions to the isotropic, single-cell trapezoid torquebox (see 

Table (6.3)) were prepared to verify the accuracy of the anisotropic torsion model, when 

applied to full isotropy. 

The solution to the torsion of the single-cell, trapezoid cross-section, anisotropic 

beam — simplified to isotropic material properties — matched the results obtained from 

the isotropic solution within 3.1%. The results proved the validity of the torsion model, 

when used with a uniform cross-sectional moment acting on the section.  The full aniso- 
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tropic model — with cross section and other dimensions modified to match the torquebox 

dimensions of reference [24] — predicted torsional displacements close to those calculated 

by the linear theory presented by reference [24] (see Table (6.6)). The anisotropic torsion 

model predicted higher angular tip displacements than those listed in reference [24]. The 

difference can be attributed to the approximation used in reference [24] by extending the 

Bredt-Batho theorem of isotropic beams to approximate the twist of anisotropic beams. 

Both linear models, however, underpredict the experimentally determined tip twist angles 

of the anisotropic beam due to assuming linear strains and rotations (Eqns. (4.20) and 

(5.5)), as well as constant shear stiffness. The accuracy of the method of Romeo, et. al. 

will increase when the incomplete diagonal shear stress field in panels operating in the 

post-buckling phase is accounted for [24]. While the model of anisotropic, single-cell beam 

torsion — derived in Chapter IV — offers higher fidelity in the linear regime, its accuracy 

can further be increased by accounting for non-linear translational strains, as well as non- 

linear curvatures about the structural axes. The accuracy can be even further increased by 

accounting for warping functions of various degrees (linear, or non-linear), as was discussed 

in Section 4.1.3.1. 

The PZT lamina was embedded in the host structure (substrate), and the engineering 

properties of the hybrid laminate were recalculated so that the modified compliance values 

could be used to calculate the material elastic coupling coefficients. Both PZT laminae 

(the AFC of reference [5], and the G-1195 PZT lamina of reference [3]) were accounted 

for by using their respective material elastic and piezoelectric properties. The torquebox 

tip-torsion angles due to the applied voltage were recorded, tabulated, and presented in 

a parametric plot, using first the variable composite ply angle, then the applied voltage 
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as a parameter. The strain actuation plots of the AFC PZT lamina, using the composite 

substrate lamina angle as parameter demonstrated a linear relation between applied voltage 

and twist angle. The strain actuation plots of the G-1195 PZT lamina, using the composite 

substrate lamina angle as a parameter, demonstrated a non-linear relation between applied 

voltage and twist angle. This was due to the piezoelectric constant, which is a function 

of the induced strain of the PZT lamina. The results probably still underpredicted any 

experimental results due to the arguments made in the previous paragraph. Also, the 

angles obtained due to strain actuation are most probably insufficient to provide adequate 

aerodynamic control of the UAV designed in Chapter II at any airspeed within the flight 

envelope. The roll authority provided by the above strain actuation results can be evaluated 

by any available theory, such as lifting-line theory, or numerical (panel) methods. 

The variation of twist angle as a function of the composite substrate lamina angle — 

using the applied voltage as a parameter — produced patterns similar to those obtained 

from the torsion of the pure composite beam, and the torsion of the PZT-composite beam 

Sections 6.2.2 and 6.2.3. The minimum twist angle due to constant voltage strain actu- 

ation of both PZT laminated torqueboxes occurred at the composite substrate angle of 

approximately 33 degrees. 

Comparing the results tabulated in Tables (6.11) and (6.10), and plotted in Fig- 

ures (6.6) and (6.8), the torquebox using the G-1195 PZT lamina achieved higher twist 

angles with lower applied voltages than the torquebox equipped with the AFC lamina. 

Though both piezoelectric constants of the G-1195 lamina are positive (creating strains of 

equal signs for a given applied electric field), they are considerably greater than those of 

the AFC lamina. This confirms the statement made in Section 5.1, that the PZT lamina of 
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high <i33 will require less voltage to produce the necessary strains. The results also validate 

the claim that the higher the stiffness the larger the fraction of the strain produced by the 

electric field that is transferred to the host structure. That is, the actuator lamina will be 

compressed less, while the substrate will be strained more. 
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VII.   Conclusions and Recommendations 

7.1    Summary 

This thesis detailed a method of analyzing and modeling a fully anisotropic, single- 

cell, closed-section, generic trapezoid cross-section torquebox under torsional deformation, 

using a full complement of air loads. The conceptual design of a proposed low-observable, 

medium-range and endurance reconnaissance UAV was accomplished in order to develop 

the baseline geometry for the three-cell, as well as the single-cell, isotropic wing torquebox, 

as well as to provide prototype dimensions for the RCS comparative study in reference 

[25]. The simplified single-cell torquebox dimensions were generated by assuming equal 

length, flat-surface wing skins between the spars as to facilitate the derivation of the fully 

anisotropic torsion model. The single-cell beam dimensions were then used to determine 

the uniform twisting moment required to generate the given amount of tip twist angles of 

the isotropic torquebox, as predicted by the Bredt-Batho theorem. 

A torsion model was then derived for both the homogeneous and non-homogeneous 

anisotropic structures. The fully anisotropic case was developed based on modifying Li- 

bove's method using a thin-walled, linearly elastic, fully anisotropic, trapezoid cross-section 

beam. The accuracy of the torsion solution using a fully isotropic case was compared to 

the solution obtained for isotropic beam torsion using the Bredt-Batho theorem. The 

fully anisotropic case (modified to a rectangular, non-constant thickness cross-section box 

beam) was compared to the results published by Romeo, et. al. for anisotropic laminate 

box beams. 
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The investigation extended the analysis to include a PZT-composite actuator lamina 

in the mid-plane of the composite host structure's skin, and to model the piezoceramic 

actuation through applied piezoceramic strain and shear. The effect of the PZT-composite 

lamina on the torsional stiffness of the torquebox was demonstrated by applying a uniform 

cross-sectional moment to the hybrid composite torquebox. 

The modeling of the piezoceramic actuation was accomplished by extending Libove's 

method derived for the anisotropic composite torquebox, to include piezoelectric strain and 

shear in the strain-stress constitutive relations. The torsional model was then re-derived 

to include the effect of PZT strain and shear present in the top and bottom skin surfaces. 

The PZT embedded surfaces were strain actuated by applying an electric field to the PZT 

actuators, inducing torsion of the host structure. The voltage generated tip torsion of the 

torquebox was verified by recording the angles of twist due to a range of applied voltages. 

The veracity of the solution was demonstrated by varying the lamina angle of two layers 

of the graphite-epoxy composite, and the resulting tip torsion angles were recorded. 

The trend of twist angles versus substrate lamina angles corresponded to the trend 

observed for the composite beam torsion due to applied moment. The torsion of the 

torquebox due to strain actuation using two different PZT laminae were compared. 

7.2     Conclusions 

This research has covered a span of over six months, starting from the conceptual 

design and iteration of the proposed UAV. The shearflow solution to the closed-section, 

single-cell and three-cell isotropic torquebox torsion was developed by using the easily 
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applicable Bredt-Batho theorem. The derivation of the anisotropic torsion model, however, 

was achieved only after overcoming considerable conceptual as well as algebraic difficulties 

in establishing the appropriate mathematical boundary conditions and correct limits of 

integration for the simplified single-cell torquebox. Some difficulty was encountered in 

arriving at the correct plane-stress constitutive elements that were used to model the strain 

and shear of the composite laminate. The generating of the correct symbolic solutions of 

over 30 partial, as well as the full-path integrals for the piecewise continuous surfaces 

— that were indispensable to develop the code that automated the solution — was a 

particularly slow and tedious process, after which the nature of the research process became 

painfully obvious: 

The research process is extremely non-linear if not discontinuous. A year's or 
decade's worth of work can pay off in one day. ... Be patient and persistent [6] 

Once the process was automated via the Matlab routines, the numerical results for the 

different cases became easier to generate. 

Nevertheless, the procedure had to be completely repeated for the PZT-composite 

laminate case, since the plane-stress constitutive equations were modified to account for 

the PZT lamina, as well as for the PZT strain and shear. Once the PZT-composite solution 

to the integrals were completed using the appropriate elastic coupling coefficients of the 

composite, and that of the PZT-composite hybrid laminate, the existing Matlab routines 

had to be modified accordingly in order to account for the respective changes in the path 

integrals. Only then it became routine to generate, run, and record sample cases to test 

the applicability of the torsion model of the anisotropic PZT actuated composite laminate. 
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The model was developed in a way that is easily modified to include different com- 

posite materials, any different PZT actuator laminas, as well as any trapezoid cross-section 

areas (that can include rectangles, squares, or even to approximate plates), thereby pro- 

viding an extremely fast and convenient tool for initial theoretical prediction of torquebox 

torsion in the linear regime. 

7.3    Recommendations 

The thesis achieved the goals set out in Section 1.3; however, it could be further 

expanded by investigating several other issues that are relevant to the topic of beam torsion. 

The study can be continued by establishing the shear-moment diagram of any desired 

flight condition for any of the UAV designs of Chapter II, and the incremental shear forces 

and bending moments along the span can be imposed upon the single-cell isotropic, or 

anisotropic torquebox. Strain actuation can be added to the structure if so desired. The 

angle of twist for a given particular, or range of loading condition can be calculated. 

Also, the torqueboxes can be designed to the given maximum flight loads, so that 

actual composite skin and spar thickness, along with their respective lamina orientation 

can be used for calculating the constitutive relations, as well as the angles of twist. The 

design methods of Section 2.4 will have to be abandoned, as they only apply to isotropic 

materials. 

The single-cell torquebox solution can also be expanded by considering a three-cell 

(or other multi-cell) beam. This can be achieved by supplementing the equations of static 

equivalence of Section 4.1.3.2 by the compatibility equations that require equal amount 
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of rotations for all sections. The PZT elements then can be applied to the surfaces of 

interest, and a full complement of shear loads, bending moments and strain actuation can 

be assumed along the span by using the methods of Chapters IV and V. 

After obtaining the solution to the multi-cell torquebox, the six UAV designs devel- 

oped can be used to conduct trade studies for PZT actuation requirements for different 

takeoff weights, aspect ratios, etc. Relations can be determined between maximum gross 

takeoff weight and strain actuation power requirements, given certain design variables (such 

as AR, wingspan, etc.) are held constant. 

Once the trade studies are completed, the results could be extrapolated within a 

reasonable range (to be determined) and the entire process could be automated, so that 

intermediate values of the independent variable (weight, AR, wingspan, etc.) can be linked 

to the dependent variables (actuation strain, power required, etc.). 

Finally, the author recommends an experimental verification of the results obtained, 

by constructing two trapezoid torqueboxes of any desired dimension (although I recommend 

the two to be the same in dimensions to ease the burden as well as lessen the expense of 

manufacturing), one specimen with, the other without the PZT-composite actuator. The 

experiment would then draw conclusions about the accuracy of the results presented in 

Chapter VI, as well as make suggestions for possible corrections and improvements. 
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Appendix A.   Airfoil Profile Parameters 

Codes 

function[Al,11,A2,121,122,A3,131,132,hl,h2]=area(cll,c22,c); 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Calculates the geometric properties of the airfoil profile 

'/.Inputs:  NLF0215.m subroutine for airfoil input data 

'/,       interp.m subroutine for interpolating values 

'/.Outputs: Geometric properties of airfoil (areas, skin lengths, spar heights) 

'/.Call the profile function for non-dimensional data 

[xcupper,zcupper,xclower,zclower]=NLF0215(xcupper,zcupper,xclower,zclower); 

'/.Count the length of the vectors for the x coordinates 

'/,(=length of y coordinates) 

nupper=length(xcupper); 

nlower=length(xclower); 

croot=c; 

cl=cll*croot; 

c2=c22*croot; 

'/.Calculate the dimensional parameters from chord and profile data 

xcupper=xcupper.*croot; zcupper=zcupper.*croot; 

xclower=xclower.*croot; zclower=zclower.*croot; 

'/.Calculate the nose cone upper area (dAlup) , and upper skin length (dllup) 

u=l: 

A-l 



dAlup=0.0; 

dllup=0.0; 

while xcupper(u)<=cl 

xl=xcupper(u); 

x2=xcupper(u+l); 

yl=abs(zcupper(u)); 

y2=abs(zcupper(u+l)); 

x=xl+(x2-xl)/2; 

[y]=interp(xl,x2,x,yl,y2); 

if x2>cl 

dAlup=dAlup+(cl-xl)*y; 

dllup=dllup+sqrt((cl-xl)"2+(y-yl)"2); 

else 

dAlup=dAlup+(x2-xl)*y; 

dllup=dllup+sqrt((x2-xl)"2+(y-yl)~2); 

end 

u=u+l; 

end 

'/.Reset counter so that first index starts where we left off 

u=u-l; 

dAlup; '/.Display result if so desired 

dllup; '/.Display result if so desired 

'/.Calculate the nose cone lower area (dAllow) and lower skin length (dlllow) 

j-i; 

dAllow=0.0; 

dlllow=0.0; 

while xclower(j)<=cl 

xl=xclower(j); 

x2=xclower(j+l); 
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yl=abs(zclower(j)); 

y2=abs(zclower(j+l)); 

x=xl+(x2-xl)/2; 

[y]=interp(xl,x2,x,yl,y2); 

if x2>cl 

dAllow=dAllow+(cl-xl)*abs(y); 

dlllow=dlllow+sqrt ((cl-xl)~2+(y-yl)"2); 

else 

dlllow=dlllow+sqrt((x2-xl)"2+(y2-yl)~2); 

dAllow=dAllow+(x2-xl)*abs(y); 

end 

end 

j=j-l; '/.Reset counter so that first index starts where we left off 

xclower(j); '/.Display result if so desired 

dAllow; '/.Display result if so desired 

dlllow; '/.Display result if so desired 

'/.Calculate the sum of the nose cone areas (dAl) and skin lengths (11) 

Al=dAlup+dAllow 

ll=dllup+dlllow 

y^^^t************************************************************* 

'/.Calculate main torque box upper area (dA2up) and upper skin length (121) 

dA2up=0.0; 

121=0.0; 

while xcupper(u)<=c2 

xl=xcupper(u); 

x2=xcupper(u+l); 

yl=zcupper(u); 

y2=zcupper(u+l); 

x=xl+(x2-xl)/2; 
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[y]=interp(xl,x2,x,yl,y2); 

if x2>c2 '/.If beyond spar, go back so no overestimate occurs 

dA2up=dA2up+(c2-xl)*y; 

121=121+sqrt((c2-xl)"2+(y-yl)"2); 

else 

dA2up=dA2up+(x2-xl)*y; 

121=121+sqrt((x2-xl)"2+(y2-yl)"2); '/.Otherwise calculate area and add to sum 

end 

u=u+l; 

end 

u=u-i; '/.Reset counter so that first index starts where we left off 

xcupper(u); '/.This is the value of the x coordinate where we left off above 

dA2up '/.Display result if so desired 

121 '/.Display result if so desired 

'/.Calculate main torque box lower area (dA21ow) and lower skin length (122) 

dA21ow=0.0; 

122=0.0; 

while xclower(j)<=c2 

xl=xclower(j); 

x2=xclower(j + l); 

yl=abs(zclower(j)); 

y2=abs(zclower(j+D); 

x=xl+(x2-xl)/2; 

[y]=interp(xl,x2,x,yl,y2); 

if x2>c2 

dA21ow=dA21ow+(c2-xl)*abs(y); 

122=122+sqrt((c2-xl)-2+(y-yl)-2); 

else 

dA21ow=dA21ow+(x2-xl)*abs(y); 
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122=122+sqrt((x2-xl)-2+(y2-yl)-2); 

end 

end 

'/,j=j-l;       '/.Reset counter so that first index starts where we left off 

'/.The total area is the some of the upper and lower areas 

A2=dA2up+dA21ow 

'/.Calculate trailing edge torque box upper area (A3) and upper skin length (131) 

dA3up=0.0; 

131=0.0; 

while u<=nupper-l 

xl=xcupper(u); 

x2=xcupper(u+l); 

yl=zcupper(u); 

y2=zcupper(u+l); 

x=xl+(x2-xl)/2; 

[y]=interp(xl,x2,x,yl,y2); 

dA3up=dA3up+(x2-xl)*y; 

131=131+sqrt((x2-xl)"2+(y2-yl)"2); 

u=u+l; 

end 

'/.Calculate trailing edge torque box lower area (A3) and lower skin length (132) 

dA31ow=0.0; 

132=0.0; 

while j<=nlower-l 

xl=xclower(j) ; 

x2=xclower(j+1); 

yl=abs(zclower (j)); 
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y2=abs(zclower(j + U); 

x=xl+(x2-xl)/2; 

[y]=interp(xl,x2,x,yl,y2); 

'/.In case of reflexed lower surface:  If lower surface below chord y<0, and 

'/.incremental area is added (-*-=+).  If lower surface above chord y>0, and 

'/.incremental area is subtracted (-*+=-) 

dA31ow=dA31ow-(x2-xl)*y; 

132=132+sqrt((x2-xl)~2+(y2-yl)"2); 

end 

dA31ow;  '/.Display result if so desired 

132     '/Display result if so desired 

A3=dA3up+dA31ow 

'/.Find spar heights (hi and h2) 

m=l; '/.Upper xc loop variable initialized 

n=l; '/.Lower xc loop variable initialized 

'/.Start with hi: 

while xcupper(m)<=cl '/.Find main spar location (=cl) on upper xc 

if xcupper(m)<=cl & xcupper(m+l)>=cl '/.Find if around main spar location 

xl=xcupper(m); 

x2=xcupper(m+l); 

yl=zcupper(m); 

y2=zcupper(m+1); 

[yll]=interp(xl,x2,cl,yl,y2) ;     '/.Interpolate for upper spar height 

end 

m=m+l; 

end 

while xclower(n)<=cl '/.Find main spar location (=cl) on lower xc 

if xclower(n)<=cl & xclower(n+l)>=cl  '/.Find if around main spar location 

xl=xclower(n); 
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x2=xclower(n+l); 

yl=zclower(n); 

y2=zclower(n+l); 

[yl2]=interp(xl,x2,cl,yl,y2); 

end 

n=n+l; 

end 

yii 

yi2 

hl=yll+abs(yl2) 

'/.Interpolate for lower spar height 

'/.Calculate main spar height 

'/.Continue with h2: 

p=i; 

q=i: 

while xcupper(p)<=c2 

'/.Upper xc loop variable initialized 

'/.Lower xc loop variable initialized 

'/.Find rear spar location (=c2) on upper xc 

if xcupper(p)<=c2 & xcupper(p+l)>=c2 '/.Find if around rear spar location 

xl=xcupper(p); 

x2=xcupper(p+l); 

yl=zcupper(p); 

y2=zcupper(p+l); 

[y21]=interp(xl,x2,c2,yl,y2) ; '/.Interpolate for upper rear  spar height 

end 

p=p+l; 

end 

while xclower(q)<=c2 '/.Find rear spar location (=c2) on lower xc 

if xclower(q)<=c2 k  xclower(q+l)>=c2 '/.Find if around rear spar location 

xl=xclower(q); 

x2=xclower(q+l); 

yl=zclower(q); 

y2=zclower(q+l); 

[y22]=interp(xl,x2,c2,yl,y2) ; '/.Interpolate  for lower rear  spar height 

end 

q-q+1; 
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end 

y21 '/.Display result if so desired 

y22 '/.Display result if so desired 

h2=y21+abs(y22) '/.Calculate rear spar height 

return 

A-8 



function[xcupper,zcupper,xclower,zclower]=NLF0215(xcupper.zcupper,xclower,zclower) 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Defines the geometric locus of the airfoil profile 

'/.Inputs:  none 

'/.Outputs: none 

'/.The nondimensional coordinates of the MLF0215 high altitude, high endurance airfoil 

xcupper=[0.0 0.0024 0.00909 0.02004 0.03527 0.05469 0.07816 

0.10546 0.13635 0.17050... 

0.20758 0.24720 0.28894 0.33237 0.37702 0.42253 0.46864 0.51524 0.56247 0.61010.. 

0.65752 0.70408 0.74914 0.79206 0.83222 0.86902 0.90193 0.93044 0.95409 0.97285.. 

0.98710 0.99658 1.00000]; 

zcupper=[0.0 0.00917 0.01947 0.03027 0.04120 0.05201 0.06250 

0.07247 0.08175 0.09019... 

0.09761 0.10389 0.10887 0.11240 0.11428 0.11427 0.11219 0.10784 0.10147 0.09373.. 

0.08513 0.07603 0.06673 0.05746 0.04844 0.03983 0.03175 0.02428 0.01737 0.01082.. 

0.00507 0.00126 0.00000]; 

xclower=[0.00000 0.00245 0.01099 0.02592 0.04653 0.07242 0.10324 

0.13854 0.17788... 

0.22073 0.26654 0.31473 0.36468 0.41576 0.46731 0.51867 0.56920 0.61825 0.66662.. 

0.71614 0.76645 0.81565 0.86198 0.90359 0.93862 0.96588 0.98504 0.99630 1.0]; 

zclower=[-0.00006 -0.00704 -0.01211 -0.01656 -0.02052 -0.02399 

-0.02699 -0.02954... 

-0.03166 -0.03334 -0.03456 -0.03531 -0.03554 -0.03519 -0.03415 -0.03225 -0.02925. 

-0.02441 -0.01663 -0.00705 0.00167 0.00804 0.01155 0.01198 0.00990 0.00655... 

0.00323 0.00086 0.0] ; 

return 
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function [y]=interp(xl,x2,x,yl,y2); 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Linear interpolation subroutine 

'/.Inputs:  Maximum and minimum independent variables x2 and xl 

'/,       Maximum and minimum dependent variables y2 and yl 

'/,       Independent variable (x) for which the dependent variable (y) is sought 

'/.Outputs: Value y 

y=yl+(x-xl)*(y2-yl)/(x2-xl); 

return 
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'/.program plotprofile.m 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Calculates and plots the geometric properties of the airfoil profile 

'/.Uses:   NLF0215.m subroutine for airfoil input data 

'/.Outputs: plots dimensional and non-dimensional profile 

xcupper=[] ;zcupper=[] ;xclower=[] ;zclower=[] ; 

'/.Call the profile function for non-dimensional data 

[xcupper,zcupper,xclower,zclower]=NLF0215(xcupper,zcupper,xclower,zclower); 

'/.These are some of the design variables: 

b=21.33; 

lam=0.40; 

croot=5.08; 

ctip=lam*croot; 

tipoffset=(croot-ctip)/2; 

'/.Calculate  the root  and tip  chord length from non-dimensional  data: 

'/.x=(x/chord) »chord) ;   z=(z/chord)*chord); 

xrootup=xcupper*croot; 

zrootup=zcupper*croot; 

xrootlo=xclower*croot; 

zrootlo=zclower*croot; 

'/.In order to plot the tip on the same plot, we need to offset it according to taper 

xtipup=xcupper*ctip+tipoffset; 

ztipup=zcupper*ctip; 

xtiplo=xclower*ctip+tipoffset; 

ztiplo=zclower*ctip; 

'/.Plot the non-dimensional profile picture from airfoil data 

close all; figure(l) plot(xcupper.zcupper.xclower.zclower,'b-'); 
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title(['NLF(l)-0215F Airfoil - Non-Dimensional Coordinates']); 

xlabel('Station (x/c)'); 

ylabelC Ordinate (z/c)'); 

axis([0 1 -0.5 0.5]); 

grid on; 

'/.Plot the airplane-specific root and tip profiles: 

figure(2) plot(xrootup,zrootup,xrootlo,zrootlo,'b-'); 

hold on; 

plot(xtipup,ztipup,'m-',xtiplo,ztiplo,'m-'); 

hold off; 

title(['NLF(l)-0215F Airfoil Root and Tip Profiles']); 

xlabel('Station (ft)'); 

ylabelC Ordinate (ft)'); 

axis([0 croot -croot/2 croot/2]); 

grid on; 

- I ) I I t I I '        r        i 

- i i i i i i i I I 1- 
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0 '; 

-2 - 

-2.5 L 
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Station (ft) 

Figure A.l     The NLF(1)-0215F High-Endurance Airfoil Profile at Wing Root and Tip 
(No Washout) 
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Appendix B.   Isotropie Beam Torsion 

Codes 

'/.program shearflow3cell 

'/.Calculate the moments required and shearflows generated by achieving desired 

'/.twist per unit length of a single-, and three-cell, closed-section torque box : 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Calculates the shear flow in three-cell, closed section box beam due to imposed tip 

'/.twist angle.  It also calculates the necessary concentrated tip moment. 

'/.Uses  : area.m 

'/.Outputs:   shear flows,  moment 

close  all; 

clear  all; 

'/.Input Profile parameters 

L=21.33; '/.Spanwise lenght of torque box (ft) 

spar 1=0.25; '/.Location of Main Spar ('/, chord) 

spar2=0.70; '/.Location of Rear Spar ('/. chord) 

chord=5.08; '/.Chord Length at station (ft) 

plotprofile(L, chord);   '/.Plot the picture of the 2-D profile (if so desired) 

tl=0.048; 

t2=tl; 

t3=tl; 

tsl=0.072; 

ts2=0.049; 

'/.Thickness (in) of nose cone skin (Area 1) 

'/.Thickness (in) of torque box skin (Area 2) 

'/.Thickness (in) of rear surface skin (Area 3) 

'/.Thickness (in) of main spar 

'/.Thickness (in) of rear spar 
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c=chord*12; '/.Convert  chord length to inches 

Lt=L*12; '/.Convert  spanwise  length to  inches 

'/.Call the function that  calculates the profile geometric parameters.     Send spar 

'/.locations  as non-dimensional   (x/c),   send chord length  (c)   in inches. 

[Al,ll,A2,121,122,A3,131,132.hl,h2]=area(sparl,spar2,c); 

A2=188.4158; 

yt*^t************************** ************************************************* 

'/.Select the material properties of the beam: 

E=10.4*10"6; '/.Young's Modulus for Aluminum 2024-T3 [psi] 

G=3.86*10"6; '/.Shear Modulus for Aluminum 2024-T3 [psi] 

rhosp=0.101; '/.Density for Aluminum 2024-T3 [lb/in~3] 

Gsparl=G; 

'/.Designate the Shear Modulus of the spar as the reference shear modulus 

G0=Gsparl; 

'/.The rear spar is made of identical material as main spar: 

Gspar2=Gsparl; 

rhosk=rhosp; 

Gskin=Gsparl; 

Gstar=Gskin/GO; '/.Define the Weighted Shear Modulus 

y,************************************************************************** 

'/.Calculate and plot moment required for generating the given angle of twist 

'/.for single-cell, closed section torquebox. 

close all; 

d=(l/2)*c*(spar2-sparl)    '/.Half distance between spars 

thetamin=2; '/.The given degrees of twist 
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thetamax=10; 

increment=2; 

j=0; 

'/.Generate plot of required moment versus angle of twist for single cell beam 

for i=thetamin:increment:thetamax; 

theta=i; 

thetarad=theta*pi/180;     '/.The twist in radians 

thetarad_unit=thetarad/Lt;  '/.The twist per unit length in radians/in 

'/.Calculate shear flow due to moment 

q(j)=thetarad_unit*(2*A2*G)*(1/(121/t2+h2/ts2+122/t2+hl/tsl)) 

'/.Calculate the moment [in-lb] required for twist: 

Mt=2*A2*q(j); 

M(j)=Mt/12 

angle(j)=theta; 

end 

'/.Calculate the Moment and shear-flow for simplified torquebox: 

T=sqrt(l+((h2-hl)/(4*d))"2);   '/.The path length correction constant 

A_s=2*d*(0.5*hl+0.5*h2) ;       '/.The simplified torque-box area 

q_s=thetarad_unit*(2*A2*G)*(l/(4*T*d/t2+h2/ts2+122/t2+hl/tsl)); 

Mt_s=2*A_s*q_s; '/.The Moment (in-lb) required for twist 

M_s=Mt_s/12; '/.The Moment (ft-lb) required for twist 

yt* ******+* + *+**++*+*+* + *++***************** + + ** + **** + *****+******************** 

'/.Calculate and plot moment required for generating the given angle of twist 

'/.for three-cell, closed section torquebox. 

'/.Calculate the constants obtained by solving the Thetal continuity relations 
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'/.for ql (shear flow in nose torque box) in terms of q2 and q3, and substituting 

'/.back into the Theta2=Theta3 continuity relation, solving for q3 (shear flow in 

'/.trailing edge torque box) in terms of q2: 

Cl=121/(Gstar*t2)+(h2/ts2)+(122/(Gstar*t2))+(hl/tsl)+(A2*h2/(A3*ts2)); 

C2=(ll/(Gstar*tl)+(hl/tsl)+(Al*hl/(A2*tsl))); 

C3=(A2/A3)*(131/(Gstar*t3)+132/(Gstar*t3)+h2/ts2); 

C4=(Al/A2)*(121/(Gstar*t2)+h2/ts2+122/(Gstar*t2)+hl/tsl); 

'/.Substitute q3 into the ql equation, and solve for ql in terms of q2 only. 

'/.Express in terms of constants: 

S3=(Cl*C2-(C4*hl/tsl)-(hl/tsl)~2)/(C2*C3+h2/ts2-(hl*h2/(tsl*ts2))); 

Sl=(C4+(hl/tsl)-(h2/ts2)*S3)/(ll/(Gstar*tl)+hl/tsl+(Al*hl/(A2*tsl))); 

yt^^^^^^^^t******************************************************************** 

'/.Calculate the effective torsional Stiffness for each subsection 

GJeffl=(4*Al~2)/((ll/(Gskin*tl))+(hl/(G0*tsl))); 

GJeff2=(4*A2-2)/((121/(Gskin*t2))+(122/(Gskin*t2))+(hl/(G0*tsl))+(h2/(G0*ts2))); 

GJeff3=(4*A3"2)/((131/(Gskin*t3)) + (132/(Gskin*t3)) + (h2/(G0*ts2))) ; 

GJeff=GJeffl+GJeff2+GJeff3 

thetamin=2; '/.Degrees of twist required at tip (end of torquebox) 

j=0; for i=thetamin:increment:thetamax; 

theta=i; 

angle(j)=theta; 

thetarad=theta* (pi/180);       '/.Convert degrees to radians 

thetaunit=thetarad/Lt;        '/.Radians of twist per unit length (rad/in) 

'/The applied moment required to achieve the required twist per unit length: 

Mt (j) = (GJef f) *thetaunit;       '/.in-lb 

'/.Then the shear flow in the second subsection 

q2(j)=Mt(j)/(2*(A1*S1+A2+A3*S3)) 
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'/.Express ql and q3 in terms of the constants multiplying q2: 

ql ( j ) =Sl*q2 ( j ) y.=ql=Mt/ (2* (A1+A2/S1+A3+S3/S1) ) 

q3(j)=S3*q2(j) 

Mtftlb(j)=Mt(j)/12 y.ft-lb 

'/.The total moment can also be calculated from: 

Mtsum=2*(Al*ql+A2*q2+A3*q3) ; '/.in-lb 

'/.This should yield identical answer to Mtftlb: 

Mt2=Mtsum/12; '/.ft-lb 

'/.The in-plane shear stress (psi) in the skin of the nose torque box: 

sigmalskin(j)=ql(j)/tl; 

'/.The in-plane shear stress (psi) in the skin of the main torque box: 

sigma2skin(j)=q2(j)/t2; 

'/.The in-plane shear stress (psi) in the skin of the trailing edge box: 

sigma3skin(j)=q3(j)/t3; 

end 

'/.Plot the single-cell and three-cell torque box required moments to generate 

'/.given angle of tip twists 

figure(l); 

plot(angle,M,'b"',angle,Mtftlb,'rs'); 

hold on; 

title(['Required Moments for Single- and Three-Cell Beam 

Torsion']); 

ylabeK'Moment (ft-lb)'); 

xlabeK'Twist Angle (deg)'); 

legendCSingle-Cell Beam','Three-Cell Beam',4); 

plot(angle,M,'b-'.angle,Mtftlb,'r-'); 

grid on; hold off; 

'/.Plot the single-cell and three-cell torque box shear flows generated by 

'/.given angle of tip twists 

figure(2); 
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plot(angle,q,'b"'.angle,ql,'rs',angle,q2,'go',angle,q3,'md'); hold 

on; title(['Shear Flows for Single- and Three-Cell Beam 

Torsion']); ylabeK'Shear Flow (lb/in)'); xlabelCTwist Angle 

(deg)'); legend('Single-Cell Beam','Three-Cell Beam, Nose 

Section',... 

'Three-Cell Beam, Mid Section','Three-Cell Beam, Tail Section',2); 

plot(angle,q,'b-',angle,ql,'r-',angle,q2,'g-',angle,q3,'m-'); grid 

on; hold off; 
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Appendix C.   Anisotropie Composite 

Beam Torsion Codes 
'/.Program Compl_aniso_compz.m 

•/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Driver program to Matlab functions Layup.m 

'/, Anisotorsion.compz.m 

'/.Defines trapezoid single-cell box beam geometric and material properties, applied 

'/.cross section loads and moments. Calculates tip twist angle of box beam. 

'/. 

'/Uses   :  Layup.m to calculate engineering properties of composite lamina. 

'/,        Anisotorsion_compz.m to calculate twist angle of box beam. 

'/.Outputs:  Tip twist angle of box beam. 

'/. 

'/.User enters: 

'/.orientation: [0 45 -45 90 -90] etc, as a row vector; 

'/.times     : The number of times ply is repeated; 

'/.symmetry   : 0 for no; 

'/, 1 for yes 

'/.Example :   [0 45 -45 90] 4s 

'/. orient  =   [0 45 -45 90] 

'/, times  = 4 

'/. sym =  1 

'/.Note      : all properties are vectors with properties per ply. 

'/.Limits    : Assumes weighted center of laminate is at h/2. 

close all; 

clear all; 

'/.Define beam geometric parameters 

cr=60.96; '/.Root chord length [in] 
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cl=0.25;c2=0.70; 

hl=8.4334; 

h2=5.3035; 

121=27.7732; 

122=29.2992; 

L=255.96; 

'/.Main spar and Rear spar location in chord percent 

'/.Height if Main Spar [in] 

'/.Height of Rear Spar [in] 

'/.Length of top surface skin between Main and Rear Spars [in] 

'/.Length of bottom surface skin between Main and Rear Spars [in] 

'/.Spanwise length of torque box [in] 

'/.Define the Loads and Moments acting: 

P=0; 

Vx=0; 

Vy=0; 

Mx=0; 

My=0; 

M_ftlb=4404; 

M=M_ftlb*12; 

'/.Spanwise extensional load  [lb] 

'/.Vertical shear load (lift) [lb] 

'/.Horizontal shear load (drag) [lb] 

'/.Applied moment about x axis (bending) [in-lb] 

'/.Applied moment about y axis (bending) [in-lb] 

'/.Applied moment about z axis (torque) [ft-lb] 

'/. [in-lb] 

'£***************************************************** 

'/.Carbon/Epoxy (AS4/3501-6) 

El=20.6*10"6; '/.Young's Modulus (fiber direction) 

E2=1.50*10~6; '/.Young's Modulus (matrix direction) 

G12=1.04*10~6;        '/.Shear Modulus (in-plane) 

vl2=0.27; '/.Poisson's Ratio 

v21=0.02; '/.Poisson's Ratio 

y^^^^^^^t************************************************************************** 

theta=45; '/.Center composite fiber rotation angle (deg) 

times=l; '/.Number of time lamina is wound 

sym=l; '/.Symmetry of lamina 0=no,l=yes 

thick=0.005;       '/.Thickness per layer of angle lamina (given by material props.) 

t= [thick]; '/.Thickness vector per layer of lamina 

'/t*********************************************************************************** 

'/.Define layer of angled lamina (only one layer of variable) orientation angles 

anglemin=10; 
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angleincr=5; 

anglemax=15; 

count=0; '/.Reset the loop-count variable (# of angles) 

for j=anglemin:angleincr:anglemax '/.Loop through the angle range 

count=count+l; 

angle(count)=j ;  '/.Form the angle vector for the plot 

'/*\ it****************************:*****:************************************************ 

'/.Define one layer of angled lamina orientation angles 

orientcom=[45 45 -45 -45 0 0 90 90]; 

'h*********************************************************************************** 

'/.Redefine thicknesses according to number of plies 

tl=times*thick*length(orient)*(sym+l); '/.Total thickness of laminate at main spar 

t2=tl; '/.Total thickness of laminate at rear spar 

ts=tl; '/.Total thickness of laminate at skin 

/_+* + *+;* + * + ♦************** + + * + ** + * + + * + **♦******** + ********* + ******** + **************** 

'/.Form the material properties for each angle ply (number of angle ply from orient) 

Elx=ones(size(orientcom))*E1; 

E2x=ones(size(orientcom))*E2; 

G12x=ones(size(orientcom))*G12; 

vl2x=ones(size(orientcom))*vl2; 

tx=ones(size(orientcom))*t; 

•/^^^t^^^^t**************************************************************** ********** 

'/.Calculate engineering properties of the composite laminate in the structural axes: 

[Ex,Ey.Gxy,a,vxy,vyx,nsx,nxs,nys,nsy]=Layup(Elx,E2x,vl2x,G12x,tx,orientcom,times,sym); 

'/.Calculate the tip twist angle for the composite construction torquebox 

[S,fideg]=Anisotorsion_compz(cr,cl,c2,hl,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,My,M,... 

Ex,Ey,Gxy,vxy,vyx,nsx,nxs,nys,nsy); 
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twist(count)=fideg; 

end 

twist 

'/.Declare plot style lines and markers 

linestyle=['b- ';'g- ';'r- ';'m- ';'c- ';'k- ';'y- ']; 

markstyle=['b+ ';'go ';'rh ';'md ';'cp ';'k* ';'yv ']; 

figure(l) plot(angle,twist,markstyleCl,:)); hold on; 

plot(angle,twist,linestyle(1,:)); hold on; 

title(['Twist Angles Due To Uniform Moment']); 

ylabelC Twist Angle (deg) ') ; 

xlabelCFiber Angle (deg)'); 

grid on; 
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'/.Function Anisotorsion_compz 

'/.Written by Capt Peter Cseke,   Jr.   - Fall  1999 - AFIT/ENY 

'/.Calculates the tip twist  angle  of the  single-cell trapezoid box-beam using 

'/.Libove's  solution 

'/.Uses:     Box beam geometric and material parameters are input from driver program 

'/.Outputs:  Tip twist angle in degrees. 

'/.Comment:  Also works for isotropic torsion, due to fact that Beta2=0 for 

'/, isotropic materials. 

function 

[S,Fideg]=Anisotorsion_compz(cr,cl,c2,hl,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,My,M,... 

Ex,Ey,Gxy,vxy,vyx,nsx,nxs,nys, nsy); 

yj+++++++************+**+* + *++**++******* ++****+ + *****+********+* + *********** 

'/.Define the half-width (d), and top surface length correction factor (T) 

d=cr*(c2-cl)/2; 

T=sqrt(l+((h2-hl)/(4*d))-2); 

Area=2*d*(hl/2+h2/2); 

'/.Calculate distance from origin to top and bottom surfaces (approximation) 

m=(hl+h2)/4; 

'/.The Compliance Matrix in the x-y structural axes: 

Sll=l/Ex; S12=-vyx/Ey; S14=nsx/Gxy; 

S21=-vxy/Ex; S22=l/Ey; S24=nsy/Gxy; 

S41=nxs/Ex;  S42=nys/Ey; S44=l/Gxy; 

S=[S11 S12 S14;S21 S22 S24;S41 S42 S44]; 

'/.Define elastic constants for constitutive relations: 
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alfal=Sll;alfa2=S14;alfa4=S44; 

'/Define elastic constants for force-strain relations: 

Bl=l/alfal;B2=-alfa2/alfal;B4=alfa4-(alfa2~2/alfal); 

'/.Define the elements of the B matrix: 

bll=4*Bl*ts*d*T+Bl*t2*h2+Bl*tl*hl; bl2=0; bl3=-Bl*d*(t2*h2-tl*hl); 

b21=0; 

b22=(-l/12)*Bl*(t2*h2"3+4*ts*d*T*h2"2+4*ts*d*T*hl*h2+tl*hi"3+4*ts*d*T*hl"2); 

b23=0; 

b31=Bl*d*(t2*h2-tl*hl); 

b32=0; 

b33=(-l/3)*Bl*d-2*(4*ts*d*T+3*t2*h2+3*tl*hl); 

B=[bll bl2 bl3;b21 b22 b23;b31 b32 b33]; 

A=inv(B); 

all=A(l,1);al2=A(l,2);al3=A(l,3); 

a21=A(2,l);a22=A(2,2);a23=A(2,3); 

a31=A(3,l);a32=A(3,2);a33=A(3,3); 

a4=8*m*Bl*d"2*T"2*ts+4*d"2*Bl*hl*ts*T+d*Bl*hl*t2*h2+(l/2)*d*Bl*tl*hl"2+... 

4*d~3*Bl~2*T~2*t2"2*h2+2*d"2*Bl*T*ts*h2+d"2*Bl"2*T*t2~2*h2"2+■■■ 

2*m*Bl*d*T*t2*h2; 

a5=(l/12)*Bl*d*(-tl*hl"3+t2*h2"3+6*ts*T*d*h2"2+6*ts*T*d*h2*hl+8*m*ts*T"2*d*h2+. 

16*m*ts*T"2*d*hl); 

a6=(l/2)*Bl*d"2*(4*m*t2*T*h2+2*hl*t2*h2-tl*hl"2+t2*h2"2); 

'/Define  the  elements  of the C matrix: 

cll=B2*h2-B2*hl;   c21=B2*d*T*(h2+hl);   c31=B2*d*(h2+hl); 

cl2=4*Bl*ts*d~2*T~2*B2-4*B2*Bl~2*d~2*T"2*t2~2*h2-2*B2*Bl*d*T*ts*h2... 

-B2*Bl~2*d*T*t2-2*h2~2+2*B2*Bl*d*T*t2*h2+4*Bl*B2*hl*ts*d*T... 
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+B2*Bl*hl*t2*h2+B2*Bl*hl~2*tl/2; 

c22=(-l/12)*B2*Bl*(-tl*hl"3+6*h2"2*t2*d*T+6*h2*hl*t2*d*T+24*ts*h2*d*2*T"2-... 

2*d*T*Bl*t2"2*h2-3); 

c32=(-1/6)*B2*Bl*d*(8*ts*d"2*T"2+6*hl*h2*t2+12*ts*T*d*h2+24*ts*hl*d*T... 

+3*tl*hl~2+24*T"2*d~2*Bl*t2"2*h2+6*d*T*Bl*t2"2*h2~2); 

cl3=(l/12)*Bl*B2*(tl*hl"3+6*ts*d*T*h2"2+6*ts*d*T*hl*h2+t2*h2-3); 

c23=(l/4)*(Bl*B2*ts*T~2*d~2*(h2~2+h:r2+2*hl*h2)); 

c33=(l/12)*Bl*B2*(-tl*hl"3+6*ts*d*T*h2~3+6*ts*d*T*hl*h2+t2*h2"3); 

cl4=(-l/6)*Bl*B2*d*(-3*tl*hl~2+6*hl*h2*t2+8*ts*d"2*T"2+12*t2*d*T*h2-3*t2*h2"2); 

c24=(l/12)*Bl*B2*d*(6*h2"2*t2*d*T+6*h2*hl*t2*d*T-h2"3*t2+tl*hl~3); 

c34=(l/2)*Bl*B2*d"2*(2*hl*h2*t2-tl*hl"2+h2"2*t2); 

C=[cll cl2 cl3 cl4;c21 c22 c23 c24;c31 c32 c33 c34]; 

'/.Define the elements of the D vector: 

dl=B4*(4*d*T*tl*t2+ts*tl*h2+ts*t2*hl)/(ts*t2*tl); 

d2=(-l/2)*B4*Bl*(8*d~2*T"2*ts*tl*Bl*t2"2*h2+4*d*T*ts"2*tl*h2... 

+2*d*T*ts*tl*Bl*t2~2*h2"2+4*t2"2*tl*d*T*h2+16*d"2*T"2*t2*ts*tl+. . . 

8*t2*ts"2*hl*d*T+2*ts~2*ts*hl*h2+t2*ts*tl*hl~2)/(t2*ts*tl); 

d3=(l/12)*B4*Bl*(-t2*hl"3+t2*h2"3+6*ts*d*T*h2"2+6*ts*d*T*hl*h2+16*t2*d"2*T"2*hl. 

+8*t2*d"2*T-2*h2)/t2; 

d4=(-l/2)*B4*Bl*d*(-4*tl*t2*d*T*h2-ts*tl*h2~2+ts*tl*hl"2-2*ts*hl*t2*h2)/(ts*tl); 

'/.Define the shear flow at s=0: 

q0=(1/(2*Area))*(M-a22*a5*Vy+(al3*a4-a33*a6)*Vx); 

'/.Define the derivatives of the longitudinal strain, and curvatures: 

e0p=al3*Vx; 

Kxp=a22*Vy; 

Kyp=a33*Vx; 

'/.Define the values for the Q's: 
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qi=cll*q0+cl2*e0p+cl3*Kxp+cl4*Kyp; 

Q2=c21*q0+c22*e0p+c23*Kxp+c24*Kyp; 

Q3=c31*q0+c32*e0p+c33*Kxp+c34*Kyp; 

eO=all*(P-Ql)-al2*(Mx+Q2)-al3*(My+Q3) 

Kx=a21*(P-Ql)-a22*(Mx+Q2)-a23*(My+Q3) 

Ky=a31*(P-Ql)-a32*(Mx+Q2)-a33*(My+Q3) 

'/.The rotation in radians per unit length: 

dFdz=(l/(2*Area))*(-e0*cll+Kx*c21+Ky*c31+q0*dl+e0p*d2+Kxp*d3+Kyp*d4); 

'/.The rotation in degrees per unit length: 

dfdz_deg=dFdz*180/pi; 

'/.The rotation in degrees for entire length of beam: 

Fideg=dfdz_deg*L; return 

C-8 



'/.Function Layup 

'/.Calculates engineering properties of laminate consisting of uniform lamina, 

'/.and orientation angles. 

'/.Input:  Composite lamina properties in material 1-2 axes 

'/.Return: Laminate engineering properties for the purposes of stiffness (C) and 

'/,      compliance matrix (S) calculations. 

function 

[Ex,Ey.Gxy,a,vxy,vyx,nsx,nxs,nys,nsy]=Layup(El,E2,vl2,G12,t,orient,times,sym) 

y^t^t************************************************************ ************** 

'/, Layup (El, E2, vl2, G12, t, orient, times, sym) 

'/. El:    lamina Young's Modulus (1 direction) per ply 

'/, E2:    lamina Young's Modulus (2 direction) per ply 

'/, vl2:   lamina Poisson's Ratio per ply 

'/. G12:   lamina Shear Modulus per ply 

'/, t:     vector of lamina thickness per ply 

'/, orient: vector of orientations in degrees 

'/, times:  Multiples of orient 

'/. sym:   Symmetric? (0 = NO, anything else means yes) 

'/. 

'/. Example:   [0 45 -45 90]4s 

'/. orient = [0 45 -45 90] 

'/, times = 4 

'/. sym = 1 

'/. 

'/, note: all properties are vectors with properties per ply. 

'/, Assumes midplane = h/2. 

'/. 

'/, Written by: Capt Jim Rogers 

'/, Modified by: Capt Peter Cseke 

A=zeros(3,3); B=A; D=A; 
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for i=l:times 

Elex((i-1)»length(El)+l:i*length(El))=El; 

E2ex((i-l)*length(E2)+l:i*length(E2))=E2; 

vl2ex ((i-1)*length(vl2) + 1:i*length(vl2))=vl2; 

G12ex((i-l)*length(G12)+l:i*length(G12))=G12; 

tex((i-l)*length(t)+l:i*length(t))=t; 

orientexC(i-1)«length(orient)+l:i*length(orient))=orient; 

end if sym "= 0 

Elex(2*length(Elex):-l:length(Elex)+l)=Elex; 

E2ex(2*length(E2ex):-l:length(E2ex)+l)=E2ex; 

vl2ex(2*length(vl2ex):-1:length(vl2ex)+1)=vl2ex; 

G12ex(2*length(G12ex):-1:length(G12ex)+1)=G12ex; 

tex(2*length(tex):-l:length(tex)+l)=tex; 

orientex(2*length(orientex):-1:length(orientex)+1)=orientex; 

end 

'/.The number of laminas (in one ply) 

n=length(orientex); 

tott=sum(tex); h=zeros(n+1,1); 

h(l)=-tott/2; for i=2:n+l 

h(i)=sum(tex(l:i-l))-tott/2; 

end 

for i=l:n 

'/.From the symmetry of the compliance matrix: 

v21=vl2ex (i)*E2ex(i)/Elex(i); 

qll=Elex(i)/(l-vl2ex(i)*v21); 

'/.Equation (3.56) 

Q12=[ qll        v21*qll 0; 

v21*qll   qll*E2ex(i)/Elex(i)    0; 
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0 0 G12ex(i)]; 

'/.Equation   (3.59) 

mc=cos(orientex(i)*pi/180); 

ns=sin(orientex(i)*pi/180); 

T=[mc~2 ns"2 2*mc*ns;   ns~2 mc"2 -2*mc*ns;   -mc*ns mc*ns mc~2-ns~2]; 

Q12(:,3)=2*Q12(:,3); 

'/Equation   (3.66) 

Qxy=T\Q12*T; 

'/.Reset the actual value of the 3rd column of Q12 

Q12(:,3)=Q12(:,3)/2; 

'/.Divide 3rd column by 2 

Qxy(:,3)=Qxy(:,3)/2; 

'/.Calculate laminate stiffness matrices (Eq. 5.20) 

A=A+Qxy*(h(i+l)-h(i)); 

B=B+Qxy*(h(i+l)-2-h(i)-2)/2; 

D=D+Qxy*(h(i+l)-3-h(i)-3)/3; 

end 

'/.Calculate the laminate compliance matrices (Eq. 5.27) 

Bs=-A\B; Cs=B/A; Ds=D-B*(A\B); 

'/.The laminate extensional compliance matrix (S): 

a=inv(A)-Bs*(Ds\Cs); 

'/.Calculate laminate engineering properties (barred values) referenced to 

'/,x and y axes (including Poisson's ratios, and shear-coupling coefficients): 

Ex=l/tott/a(l,l); 

Ey=l/tott/a(2,2); 

Gxy=l/tott/a(3,3); 

vxy=-a(2,l)/a(l,l); 
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vyx=-a(l,2)/a(2,2); 

nsx=a(l,3)/a(3,3); 

nxs=a(3,l)/a(l,l); 

nys=a(3,2)/a(2,2); 

nsy=a(2,3)/a(3,3); 

return 
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Appendix D.   Anisotropie 

Composite-PZT Beam Torsion Codes 

'/.Program Compl_aniso_pzt .m 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Driver program to Matlab functions Layup.m 

'/, Anisotorsion_pzt .m 

'/.Defines trapezoid single-cell box beam geometric and material properties, applied 

'/.cross section loads and moments.  '/.Calculates tip twist angle of box beam. 

'/. 

'/.Uses  :  Layup.m for engineering properties of lamina and composite-pzt lamina. 

'/,        Anisotorsion_pzt .m to calculate twist angle of box beam. 

'/.Outputs:  Tip twist angle of box beam. 

'/. 

'/.User enters: 

'/.orientation: [0 45 -45 90 -90] etc, as a row vector; 

'/.times     : The number of times ply is repeated; 

'/.symmetry   : 0 for no; 

'/, 1 for yes 

'/.Example :   [0 45 -45 90] 4s 

'/. orient  =   [0 45 -45 90] 

'/, times  = 4 

'/. sym =  1 

'/.User enters: Loading condition on cross section (P,Vx,V,Mx,My,M=Mz) 

'/, Select PZT laminate material properties from available choices 

'/.Note      : all properties are vectors with properties per ply. 

'/.Limits    : Assumes weighted center of laminate is at h/2. 

yi+++++++* + **++******** + **++ + * + + + **++*+**************** + ++*!(;+ + *+********** + *** + *** 

close all; 

clear all; 
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'/.Define beam geometric parameters 

cr=60.96; 

cl=0.25;c2=0.70; 

hl=8.4334; 

h2=5.3035; 

121=27.7732; 

122=29.2992; 

*/.tl=0.072; 

'/.t2=0.049; 

'/.ts=0.048; 

L=255.96; 

'/.Root chord length [in] 

'/.Main spar and Rear spar location in chord percent 

'/.Height if Main Spar [in] 

'/.Height of Rear Spar [in] 

'/.Length of top surface skin between Main and Rear Spars [in] 

'/.Length of bottom surface skin between Main and Rear Spars [in] 

'/.Main Spar thickness [in] 

'/.Rear Spar thickness [in] 

'/.Skin thickness (tl=t2) [in] 

'/.Spanwise length of torque box [in] 

'/.Define the Loads and Moments acting: 

P=0; 

Vx=0; 

Vy=0; 

Mx=0; 

My=0; 

M_ftlb=4404; 

M=M_ftlb*12; 

'/.Spanwise extensional load  [lb] 

'/.Vertical shear load (lift) [lb] 

'/.Horizontal shear load (drag) [lb] 

'/.Applied moment about x axis (bending) [in-lb] 

'/.Applied moment about y axis (bending) [in-lb] 

'/.Applied moment about z axis (torque) [ft-lb] 

'/. [in-lb] 

y^^^^t************************************************ 

'/.Carbon/Epoxy (AS4/3501-6) 

El=20.6*10"6; '/.Young's Modulus (fiber direction) 

E2=1.50*10"6; '/.Young's Modulus (matrix direction) 

G12=1.04*10"6;        '/.Shear Modulus (in-plane) 

vl2=0.27; '/.Poisson's Ratio 

v21=0.02; '/.Poisson's Ratio 

thick=0.005; '/.Thickness per layer of angle lamina (given by material props.) 

•/,****************************************************** 

'/.Piezoceramic Lamina 

Elpzt=4.6786*10~6; '/.Young's Modulus   (AFC) (poling,   long,   or fiber direction psi) 
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E2pzt=2.4173*10*6; '/.Young's Modulus (AFC) (transverse direction) (psi) 

G12pzt=5.8015*10*5; '/.Shear Modulus (AFC) (in-plane, psi) 

thickpzt=0.006496063; '/.Thickness of one layer of PZT lamina (AFC) 

'/.Elpzt=5.4389*10*6; '/.Young's Modulus (Ron Barrett) 

'/.E2pzt=2.0305*10"6; '/.Young's Modulus (Ron Barrett) 

y.G12pzt=5.5114*10*5; '/.Shear's Modulus (Ron Barrett) 

'/.thickpzt=0.005; '/.Thickness of one layer of PZT lamina (Ron Barrett) 

'/.dl3=1.66*10"-10; '/.Dielectric constant (m/V) 

'/.Elpzt=9.1374*10*6; '/.Young's Modulus (Zhou, Liang & Rogers) 

'/.Elpzt=10.153*10*7; '/.Young's Modulus (Crawley, de Luis) 

vl2pzt=0.30; '/.Poisson's Ratio 

'/.v21pzt=0.30; '/.Poisson's Ratio 

y^********************************************************************************* 

anglepzt=45; '/.Orientation of PZT patch 

theta=45; '/.Center composite fiber rotation angle (deg) 

times=l; '/.Number of times lamina is wound 

sym=0; '/.Symmetry of lamina 0=no,l=yes 

,/l********»********+***************************************************************** 

'/.Define layer of angled lamina (only one layer of variable) orientation angles 

anglemin=0; 

angleincr=2; 

anglemax=90; 

count=0; '/.Reset the loop-count variable (# of angles) 

for j=anglemin:angleincr :anglemax  '/.Loop through the angle range 

count=count+l; 

angle(count)=j; 
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y^******************************************************************************** 

'/.Define layer of angled lamina-pzt orientation angles 

orientall=[0 j anglepzt -j 0]; 

orientcom=[0 j theta -j 0] ; 

locatepzt=3; '/.The PZT layer location in the laminate 

'/* ***************************************************************************** 

'/.Redefine thicknesses according to number of plies 

t= [thick]; '/.Thickness vector per layer of lamina 

tl=times*thick*length(orientcom)*(sym+l) ; '/.Total thickness of laminate at main spar 

t2=tl; '/.Total thickness of laminate at rear spar 

'/.Total thickness of laminate (composite and pzt) at skin 

ts=times*thick*(length(orientall)-1)*(sym+1)+thickpzt; 

y#* ********************************************************************************** 

'/.Form material properties for each angle ply (number of angle ply from orientall) 

Elxp=ones(size(orientall))*E1; 

E2xp=ones(size(orientall))*E2; 

G12xp=ones(size(orientall))*G12; 

vl2xp=ones(size(orientall))*vl2; 

txp=ones(size(orientall))*t; 

Elxp(locatepzt)=Elpzt; 

E2xp(locatepzt)=E2pzt; 

G12xp(locatepzt)=G12pzt; 

vl2xp(locatepzt)=vl2pzt; 

txp(locatepzt)=thickpzt; 

yt* ********************************************************************************* 

'/.Call Layup.m subroutine to calculate composite-pzt laminate engineering properties 

[Epx,Epy,Gpxy,ap,vpxy,vpyx,npsx,npxs,npys,npsy]=Layup(Elxp,E2xp,vl2xp,G12xp,txp,... 

orientall,times,sym); 
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'/.The Compliance Matrix (plane stress) for the Compos site- -PZT Laminate in the x-y 

'/.structural axes: 

Spll= =1/Epx; Spl2=-vpyx/Epy; Spl4=npsx/Gpxy; 

Sp21= =-vpxy/Epx; Sp22=l/Epy; Sp24=npsy/Gpxy; 

Sp41= =npxs/Epx; Sp42=npys/Epy; Sp44=l/Gpxy; 

Spzt=[Spll Spl2 Spl4;Sp21 Sp22 Sp24;Sp41 Sp42 Sp44]; 

'/.Calculate laminate engineering properties (composite laminate only) 

Elx=ones(size(orientcom))*E1; 

E2x=ones(size(orientcom))*E2; 

G12x=ones(size(orientcom))*G12; 

vl2x=ones(size(orientcom))*vl2; 

tx=ones(size(orientcom))*t; 

'/.Call Layup.m subroutine to calculate composite only laminate engineering properties 

[Ex,Ey.Gxy,a,vxy,vyx,nsx,nxs,nys,nsy]=Layup(Elx,E2x,vl2x,G12x,tx,orientcom,times,sym); 

'/.The Compliance Matrix (plane stress) for the Composite-PZT Laminate in the x-y 

'/structural axes: 

Sll=l/Ex;   S12=-vyx/Ey; S14=nsx/Gxy; 

S21=-vxy/Ex; S22=l/Ey;   S24=nsy/Gxy; 

S41=nxs/Ex;  S42=nys/Ey;  S44=l/Gxy; 

Scom=[Sll S12 S14;S21 S22 S24;S41 S42 S44] ; 

yt* ******************************************************************************* 

'/.Call anisotropic torsion solution subroutine to calculate the amount of tip torsion 

'/.for the single cell box beam 

[fideg]=Anisotorsion_pzt(cr,cl,c2,hl,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,My,M.Spzt,Scorn) ; 

twist(count)=fideg; 
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end 

orientall 

twist 

'/.Declare plot  style lines  and markers 

linestyle=['b-   ';'g-   ';'r-   ';'m-   ';'c-   ';'k-   ';'y-   ']; 

markstyle=['b+ ';'go ';'rh ';'md ';'cp ';'k* ';'yv '] ; 

figure(l); plot(angle,twist,markstyle(2,:)); 

hold on; 

plot(angle,twist,linestyle(2,:)); 

hold on; 

title(['Twist Angles Due To Uniform Moment']); 

ylabel('Twist Angle (deg)'); 

xlabelCFiber Angle (deg)'); 

legend('AFC',0); 

grid on; 
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'/.Function Anisotorsion_pzt 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Calculates the tip twist angle of the single-cell trapezoid box-beam with PZT actuator 

'/.embedded in top and bottom skins.  No PZT in main or rear spars. 

'/.Uses:     Box beam geometric and material parameters are inputed from driver program 

'/.Output:   Tip twist angle in degrees 

'/.Also works for isotropic torsion, because Beta2=0 (B2 and Bp2) for isotropic materials. 

function [Fideg]=Anisotorsion_pzt(cr,cl,c2,hi,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,My,M,Sp,Sc); 

y^t************************************************************************* 

'/.Define the half-width, and top surface length correction factor 

d=cr*(c2-cl)/2; 

T=sqrt(1+((h2-hl)/(4*d))"2); 

Area=2*d*(hl/2+h2/2); 

m=(hl+h2)/4; 

'/.Designate the compliance Matrix for the composite laminate: 

Sll=Sc(l,l);S12=Sc(l,2);S14=Sc(l,3); 

S21=Sc(2,l);S22=Sc(2,2);S24=Sc(2,3); 

S41=Sc(3,l);S42=Sc(3,2);S44=Sc(3,3); 

'/.Designate the compliance Matrix for the composite-pzt laminate: 

Spll=Sp(l,l);Spl2=Sp(l,2);Spl4=Sp(l,3); 

Sp21=Sp(2,l);Sp22=Sp(2,2);Sp24=Sp(2,3) ; 

Sp41=Sp(3,l);Sp42=Sp(3,2);Sp44=Sp(3,3)] 

'/.Define elastic constants for constitutive relations of composite laminate only: 

alfal=Sll;alfa2=S14;alfa4=S44; 

'/.Define elastic constants for constitutive relations of composite-pzt laminate: 

alfapl=Spll;alfap2=Spl4;alfap4=Sp44; 
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'/.Define elastic constants for force-strain relations of composite laminate only: 

Bl=l/alfal;B2=-alfa2/alfal;B4=alfa4-(alfa2-2/alfal); 

'/Define elastic constants for force-strain relations of composite-pzt laminate: 

Bpl=l/alfapl;Bp2=-alfap2/alfapl;Bp4=alfap4-(alfap2"2/alfapl); 

'/.Define the elements of the B matrix: 

bll=4*Bpl*ts*d*T+Bl*t2*h2+Bl*tl*hl; 

bl2=0; 

M3=-Bl*d*(t2*h2-tl*hl) ; 

b21=0; 

b22=(-Bpl*ts*h2-3*d*T)/(3*(h2-hl))+(1/(3*(h2-hl)))*(Bpl*ts*hl~3*d*T)"... 

(1/12)*Bl*t2*h2"3-(1/12)*Bl*tl*hl"3; 

b23=0; 

b31=Bl*d*(t2*h2-tl*hl); b32=0; 

b33=(-4/3)*Bpl*ts*d"3*T-Bl*t2*d-2*h2-Bl*tl*d"2*hl; 

B=[bll bl2 bl3;b21 b22 b23;b31 b32 b33]; 

A=inv(B); all=A(l,l);al2=A(l,2);al3=A(l,3); 

a21=A(2,l);a22=A(2,2);a23=A(2,3); 

a31=A(3.1);a32=A(3,2);a33=A(3,3); 

a4=(l/2)*d*Bl*t2*h2"2+2*h2*Bpl*ts*d"2*T+d*hl*Bl*t2*h2+4*hl*Bpl*ts*d"2*T+... 

(1/2)*d*Bl*tl*hl~2+2*m*d*T*Bl*t2*h2+8*m*Bpl*d"2*T"2*ts; 

a5=(l/12)*(-Bl*tl*hl"3+6*Bpl*ts*d*T*h2*hl+Bl*t2*h2"3+6*Bpl*ts*d*T*h2"2+... 

8*m*Bpl*d*T~2*ts*h2+16*m*Bpl*d*T~2*ts*hl); 

a6=(-l/2)*d-2*(-4*m*T*Bl*t2*h2-t2*Bpl*h2"2+4*Bl*t2*d*T*h2-4*d*t2*T*Bpl*h2+... 

Bl*tl*hl-2-2*Bl*hl*t2*h2); 
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'/.Define the elements of the C matrix: 

cll=B2*h2-B2*hl; c21=Bp2*d*T*(h2+hl); c31=B2*d*(h2+hl); 

cl2=B2*((-1/2)*Bl*t2*h2~2-2*h2*Bpl*ts*d*T+4*hl*Bpl*ts*d*T+(1/2)*Bl*tl*hl"2+... 

hl*Bl*t2*h2)+Bp2*(2*d*T*Bl*t2*h2+4*Bpl*ts*d"2*T"2); 

c22=(B2/12)*(Bl*tl*hl~3+Bl*t2*h2~3)+(Bp2/2)*(-d*T*Bl*t2*h2"2-4*Bpl*ts*d"2*T"2*hl-... 

d*T*hl*Bl*t2*h2-4*Bpl*ts*d"2*T"2*h2); 

c32=(-d/6)*(3*B2*Bl*t2*h2"2+12*d*B2*T*Bpl*ts*h2+8*Bpl*ts*d"2*T"2*Bp2+... 

3*B2*Bl*tl*hl"2+6*B2*hl*Bl*t2*h2+24*d*B2*T*hl*Bpl*ts); 

cl3=(l/12)*B2*(Bl*t2*h2"3+6*Bpl*ts*h2"2*d*T+6*Bpl*ts*hl*h2*d*T+Bl*tl*hl"3); 

c23=(l/4)*Bpl*ts*Bp2*d-2*T-2*(h2"2+hl"2+2*hl*h2); 

c33=(l/12)*d*B2*(-Bl*tl*hl"3+Bl*t2*h2"3+6*Bpl*ts*h2"2*d*T+6*Bpl*ts*hl*h2*d*T); 

cl4=(l/6)*d*(-8*Bpl*ts*d*2*T~2*Bp2+3*B2*Bl*tl*hl-2-6*B2*Bl*hl*t2*h2... 

-12*Bp2*d*T*Bl*t2*h2-12*d*B2*t2*T*h2*Bl+3*B2*t2*Bpl*h2"2+12*d*B2*t2*T*Bpl*h2); 

c24=(1/12)*d*(B2*Bl*tl*hl"3+6*Bp2*d*T*h2*hl*Bl*t2+6*Bp2*d*T*Bl*t2*h2"2-B2*t2*Bpl*h2"3); 

c34=(l/2)*d"2*B2*(-4*d*t2*T*h2*Bl+t2*Bpl*h2"2+4*t2*d*T*Bpl*h2-Bl*tl*hl"2+2*Bl*hl*t2*h2); 

C=[cll cl2 cl3 cl4;c21 c22 c23 c24;c31 c32 c33 c34]; 

'/Define the elements of the D vector: 

dl=(4*Bp4*d*T*tl*t2+B4*ts*tl*h2+B4*ts*t2*hl)/(ts*t2*tl); 

d2=(-l/2)*(B4*ts*tl*Bl*t2*h2"2+16*Bpl*d~2*T"2*Bp4*t2*ts*tl+8*B4*t2*ts"2*hl*Bpl*d*T+... 

2*B4*t2"2*ts*Bl*hl*h2+B4*t2*ts*Bl*tl*hl"2+4*Bp4*t2"2*tl*d*T*h2*Bl+... 

4*B4*ts"2*tl*h2*Bpl*d*T)/(t2*ts*tl); 

d3=(l/12)*(8*Bpl*d"2*T~2*Bp4*t2*h2+16*Bpl*d"2*T"2*Bp4*t2*hl+6*B4*d*T*Bpl*ts*h2"2+... 

6*B4*d*T*Bpl*ts*hl*h2+B4*Bl*t2*h2"3-Bl*B4*t2*hl"3)/t2; 

d4=(l/2)*d*(4*B4*d*T*ts*tl*Bpl*h2+2*Bp4*Bl*ts*hl*h2*t2-Bp4*Bl*ts*tl*hl"2+... 

4*Bp4*tl*d*T*Bl*t2*h2+B4*ts*tl*Bpl*h2"2-4*B4*d*T*ts*tl*h2*Bl)/(ts*tl); 

'/.Define the shear flow at s=0: 

q0=(l/(2*Area))*(M-a22*a5*Vy+(al3*a4-a33*a6)*Vx); 

D-9 



'/.Define the derivatives of the strain, and curvatures: 

e0p=al3*Vx; Kxp=a22*Vy; Kyp=a33*Vx; 

'/.Define the values for the Q's: 

Ql=cll*q0+cl2*e0p+cl3*Kxp+cl4*Kyp; 

Q2=c21*q0+c22*e0p+c23*Kxp+c24*Kyp; 

Q3=c31*q0+c32*e0p+c33*Kxp+c34*Kyp; 

Z1=0; Z2=0;Z3=0; eO=all*(P-Q1+Z1)-al2*(Mx+Q2+Z2)-al3*(My+Q3+Z3); 

Kx=a21*(P-Q1+Z1)-a22*(Mx+Q2+Z2)-a23*(My+Q3+Z3); 

Ky=a31*(P-Q1+Z1)-a32*(Mx+Q2+Z2)-a33*(My+Q3+Z3); 

'/.The rotation in radians per unit length: 

dFdz=(l/(2*Area))*(-e0*cll+Kx*c21+Ky*c31+q0*dl+e0p*d2+Kxp*d3+Kyp*d4); 

'/.The rotation in degrees per unit length: 

dfdz_deg=dFdz*180/pi; 

'/.The rotation in degrees for entire length of beam: 

Fideg=dfdz_deg*L; 

return 
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Appendix E.   Anisotropie 

Composite-PZT Strain Actuation Codes 

'/.Program Compl_aniso_pzt_e.m 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Driver program to Matlab functions Layup.m 

'/, Anisotorsion_pzt .m 

'/.Defines trapezoid single-cell box beam geometric and material properties, 

'/.applied cross section loads and moments. 

'/.Calculates tip twist angle of box beam. 

'/.Uses  :  Layup.m to calculate engineering properties of lamina and 

'/,        composite-pzt lamina. 

'/, Anisotorsion_pzt_e.m to calculate twist angle of box beam. 

'/.Outputs:  Tip twist angle of box beam. 

'/. 

'/.User enters: 

'/.orientation: [0 45 -45 90 -90] etc, as a row vector; 

'/.times     : The number of times ply is repeated; 

'/.symmetry  : 0 for no; 

'/, 1 for yes 

'/.Example :   [0 45 -45 90] 4s 

'/. orient  =   [0 45 -45 90] 

'/, times  = 4 

'/, sym = 1 

'/.Note      : All properties are vectors with properties per ply. 

'/.Limits    : Assumes weighted center of laminate is at h/2. 

close all; clear all; 

'/.Define beam geometric parameters 
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cr=60.96; '/.Root chord length [in] 

cl=0.25;c2=0.70; '/.Main spar and Rear spar location in chord percent 

hl=8.4334; '/.Height of Main Spar [in] 

h2=5.3035; '/.Height of Rear Spar [in] 

121=27.7732; '/.Length of top skin between Main and Rear Spars [in] 

122=29.2992; '/.Length of bottom skin between Main and Rear Spars [in] 

L=255.96; '/.Spanwise length of torque box [in] 

'/.Define the Loads and Moments acting: 

P=0; '/.Spanwise extensional load  [lb] 

Vx=0; '/.Vertical shear load (lift) [lb] 

Vy=0; '/.Horizontal shear load (drag) [lb] 

Mx=0; '/.Applied moment about x axis (bending) [in-lb] 

My=0; '/.Applied moment about y axis (bending) [in-lb] 

M_ftlb=0; '/.Applied moment about z axis (torque) [ft-lb] 

M=M_ftlb*12; '/. [in-lb] 

'/.Voltage applied to PZT lamina in poling direction 

*/.V=[100 250 500 750 1000];     '/.AFC Lamina 

V=[50 75 100 150 200];        '/.G-1195 Lamina 

'/.For the sake of the legend for figure 2, rewrite in string format 

'/.Uncomment depending which PZT lamina is used 

'/.Volts=['100 V ';'250 V ';'500 V ';'750 V ';'1000 V'];  '/.AFC Lamina 

Volts=['50 V ' ;'75 V ';'100 V';'150 V';'200 V'];       '/.G-1195 lamina 

•/_*+***++*************** + ****************************** 

'/.Carbon/Epoxy (AS4/3501-6) 

El=20.6*10~6; '/.Young's Modulus (fiber direction) [psi] 

E2=1.50*10"6; '/.Young's Modulus (transverse direction) [psi] 

G12=l.04*10*6;        '/.Shear Modulus (in-plane) [psi] 

vl2=0.27; '/.Poisson's Ratio 

v21=0.02; '/.Poisson's Ratio 

thick=0.005; '/.Thickness per layer of  angle lamina 
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'/, (given by material props .) 

'/,AFC Piezoceramic Lamina (Aaron Bent) 

'/,Elpzt=4.6786*10*6; '/.Young's Modulus (poling, or fiber direction psi) 

'/.E2pzt=2.4173*10*6; '/.Young's Modulus (transverse direction) [psi] 

'/.G12pzt=5.8015*10*5; '/.Shear Modulus (in-plane) [psi] 

'/.thickpzt_mm=0.165; '/.Thickness of one layer of PZT lamina [mm] 

'/,thickpzt_m=thickpzt_mm/1000; '/.Thickness of one layer of PZT lamina [m] 

'/,thickpzt=thickpzt_m/0.0254; '/.Thickness of one layer of PZT lamina [in] 

y.efinsp_m=0.001125; '/.Electrode finger spacing [m] 

'/,thick_select=ef insp_m; 

'/.d33=180*10"-12; 

'/.d31=-50*10--12; 

'/.The AFC lamina uses electrode fingerspacing 

'/.as characteristic thickness to divide V 

'/.Piezoelectric constant in poling direction [m/V] 

'/.Piezoelectric constant in transverse direction [m/V] 

'/.PZT-Composite Lamina G-1195 (Ron Barrett) 

Elpzt=5.4389*10*6; '/.Young's Modulus (poling or fiber direction psi) 

E2pzt=2.0305*10*6; '/.Young's Modulus (transverse direction) [psi] 

G12pzt=5.5114*10*5; '/.Shear Modulus (in-plane, psi) 

thickpzt_mm=0.2032; '/.Thickness of one layer of PZT lamina [mm] 

thickpzt_m=thickpzt_mm/1000; '/.Thickness of one layer of PZT lamina [m] 

thickpzt=thickpzt_m/0.0254; '/.Thickness of one layer of PZT lamina [in] 

Lambda=207*10"-6; 

thick_select=thickpzt_m; 

'/.Actuation Strain 

'/.The G-1195 lamina uses lamina thickness to divide V'/. 

d33=250*10*-12; 

d31=25*10*-12; 

vl2pzt=0.30; 

'/.Piezoelectric constant in poling direction [m/V] 

'/.Piezoelectric constant in transverse direction (m/V) 

'/.using the small signal linear model 

'/.(Crawley-Anderson 1990) 

'/.Poisson's Ratio 
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anglepzt=45; '/.Orientation of PZT patch 

yt**************************************************************************** 

theta=45; '/.Center composite fiber rotation angle   (deg) 

times=l; '/.Number of times  lamina is wound 

sym=0; '/.Symmetry of lamina 0=no,l=yes 

'/t* **************************************************************************** 

'/.Define layer of angled lamina (only one layer of variable) orientation angles 

anglemin=0 

angleincr=5       '/.Keep increment at 5, so that 15, 30, 45, etc. can be found 

anglemax=90; 

'/.The same defined for easier plotting 

angle_select=[15 30 45 60 75 90]; anglerange=[*15 deg';'30 

deg';'45 deg';'60 deg';'75 deg';'90 deg']; 

count=0; '/.Reset the loop-count variable (# of angles) 

select=l; '/.Set counter for counting elements of angle-select 

for j=anglemin:angleincr :anglemax  '/.Loop through the angle range 

count=count+l; '/.Update the loop variable 

angle(count)=j; 

orientall=[0 j anglepzt -j 0] ; 

'/.Orientation angles for 3 layers of composite-PZT laminate: 

'/,orientall=[0 anglepzt anglepzt anglepzt 0] ; 

orientcom=[0 j theta -j 0] j     '/.Orientation angles for composite laminate 

locatepzt=3; '/.The pzt layer location in the laminate 

'/.Needs to be changed to reflect changes in 

'/."orientall" and "orientcomp" 

'/,*************************************************************************** 

'/.Redefine thicknesses according to number of plies 

t= [thick]; '/.Thickness vector per layer of lamina 
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tl=times*thick*length(orientcom)*(sym+l); '/.Total main spar lamina thickness 

t2=tl; '/Total rear spar lamina thickness 

'/.Total thickness of laminate (composite and pzt) at skin 

ts=times*thick*(length(orientall)-1)*(sym+1)+thickpzt; 

'/t************************************************************************** 

'/.Form the material properties for each angle ply 

'/.(number of angle ply from orientall) 

Elxp=ones(size(orientall))*E1; 

E2xp=ones(size(orientall))*E2; 

G12xp=ones(size(orientall))*G12; 

vl2xp=ones(size(orientall))*vl2; 

txp=ones(size(orientall))*t; 

Elxp (locatepzt) =Elpzt; '/.Elxp (2) =Elpzt; Elxp (4) =Elpzt; 

E2xp (locatepzt) =E2pzt; */.E2xp (2) =E2pzt; E2xp (4) =E2pzt; 

G12xp (locatepzt) =G12pzt; '/.G12xp (2) =G12pzt; G12xp (4) =G12pzt; 

vl2xp (locatepzt) =vl2pzt; '/.vl2xp (2) =vl2pzt; vl2xp (4) =vl2pzt; 

txp (locatepzt) =thickpzt; '/.txp (2) =thickpzt; txp (4) =thickpzt; 

'/,************************************************************************** 

'/.Call the Layup.m subroutine to calculate composite-pzt laminate engineering 

'/.properties 

[Epx,Epy,Gpxy,ap,vpxy,vpyx,npsx,npxs,npys,npsy]=Layup(Elxp,E2xp,... 

vl2xp,G12xp,txp,orientall,times,sym); 

'/.The Compliance Matrix (plane stress) for the Composite-PZT Laminate in the x-y 

'/.structural axes: 

Spll=l/Epx;    Spl2=-vpyx/Epy; Spl4=npsx/Gpxy; 

Sp21=-vpxy/Epx; Sp22=l/Epy;    Sp24=npsy/Gpxy; 

Sp41=npxs/Epx;  Sp42=npys/Epy;  Sp44=l/Gpxy; 

Spzt=[Spll Spl2 Spl4;Sp21 Sp22 Sp24;Sp41 Sp42 Sp44]; 
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'/.Calculate laminate engineering properties (composite laminate only) 

Elx=ones(size(orientcom))*E1; 

E2x=ones(size(orientcom))*E2; 

G12x=ones(size(orientcom))*G12; 

vl2x=ones(size(orientcom))*vl2; 

tx=ones(size(orientcom))*t; 

'/.Call the Layup.m subroutine to get composite laminate engineering properties 

[Ex,Ey,Gxy,a,vxy,vyx,nsx,nxs,nys,nsy]=Layup(Elx,E2x,... 

vl2x,G12x,tx,orientcom,times,sym); 

'/.The Compliance Matrix (plane stress) for the Composite Laminate in the 

'/,x-y structural axes: 

Sll=l/Ex;    S12=-vyx/Ey; S14=nsx/Gxy; 

S21=-vxy/Ex; S22=l/Ey;   S24=nsy/Gxy; 

S41=nxs/Ex;  S42=nys/Ey;  S44=l/Gxy; 

Scom=[Sll S12 S14;S21 S22 S24;S41 S42 S44] ; 

'/,***************************** *********************************************** 

for i=l:length(V); 

V(i); 

'/.The applied electric field (thick_select depends on type of PZT lamina used) 

E33=V(i)/thick_select; '/.[V/m] 

'/,********************** Use only for G-1195 **************************** 

Ea=V(i)/thickpzt_mm '/.Applied voltage per milimeter [V/mm] 

'/.From Crawley and Lazarus 1991 using Figure Al. 

Lambda=((150*10"-6)/400)*Ea  '/.Induced Strain from linear approximation 

'/.From Crawley and Anderson 1990 using Figure 7. 
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d33=((50*10~-12)/(120*10~-6))*(Lambda)+(240*10~-12) 

'/,d33=Lambda/E33; '/.The secant piezoelectric coefficient [m/V] 

d31=(l/10)*d33 

'/The piezoelectric strain-shear vector in the material principle directions 

pztstrainl2=[d31 0 0;0 d31 0;0 0 d33]*E33;  '/. {x y z}=[T]{l 2 3} rotation 

'/.pztstraini2=[d33 0 0;0 d31 0;0 0 d31]*E33; '/. {z x y}=[T]{3 1 2} rotation 

'/.Subroutine to transform principle strains/shears into structural strains/shears 

pztstrainzx=transform(pztstrainl2,anglepzt); 

'/.The piezoelectric strain and shear in the z-x structural axes 

ep_z=pztstrainzx(3,3); 

'/.ep_z=pztstrainzx(l,l); 

gp_zx=pztstrainzx(3,l); 

'/,gp_zx=pztstrainzx(l,2); 

'/.Call the anisotropic torsion solution subroutine to calculate the amount 

'/.of tip torsion for the single cell box beam 

fideg=Anisotorsion_pzt_e(cr,cl,c2,hl,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,... 

My,M,ep_z,gp_zx,Spzt,Scorn); 

twist (count, i)=fideg;  '/.The 2-D twist angle variable 

'/.Rows: different composite angle 

'/.Columns: different Voltage applied 

end 

'/.Select only the angles desired to plot (don't want to plot all angles 0-90) 

if j==angle_select(select) 

twist_select(select,:)=twist(count,:); 

select=select+l; 
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end 

end 

'/.Here are the angles from 15-90 with 15 degree increments 

twist_select 

'/.Declare plot style lines and markers 

linestyle=['b- ';'g- >;'r- ';'m- ';'k- ';'c- ';'y- ']; 

markstyle=['b+ ';'go ';'rh ' ;'md ';'kp ';'c* ';'yv ']; 

figure(l) 

for k=l:l:length(angle_select)     '/.Length of lamina angles 

'/.Plot the angles of twist with markers 

plot(V,twist_select(k,:),markstyle(k,:)); 

hold on; 

end for k=l:l:length(angle_select) 

'/.Plot the angles of twist with lines for better visibility 

plot(V,twist_select(k,:),linestyle(k,:)'); 

hold on; 

end 

'/.title(['Twist Angles Due To Strain Actuation - Lamina Angles']); 

ylabeK'Twist Angle (deg)'); 

xlabelCApplied Electric Field (V)'); 

legend([anglerange],2); 

grid on; hold off; 

figure(2) 

for m=l: l:length(V) '/.Length of Voltages 

'/.Plot the angles of twist with markers 

plot(angle,twist(:,m),markstyle(m,:)); 

hold on; 

end for m=l:l:length(V) 

'/.Plot the angles of twist with lines for better visibility 
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plot(angle,twist(:,m),linestyle(m,:)); 

hold on; 

end 

'/.title(['Twist Angles Due To Strain Actuation - Applied Voltage']); 

ylabeK'Twist Angle (deg)'); 

xlabelCFiber Angle (deg)'); 

legend([Volts],0); 

grid on; hold off; 

E-9 



'/.Function Anisotorsion_pzt_e.m 

'/.Written by Capt Peter Cseke, Jr. - Fall 1999 - AFIT/ENY 

'/.Calculates the tip twist angle of the single-cell trapezoid box-beam with PZT actuator 

'/.embedded in top and bottom skins.  No PZT in main or rear spars. 

'/.Uses:     Box beam geometric and material parameters are inputed from driver program 

'/.Output:   Tip twist angle in degrees 

'/.Also works for isotropic torsion, because Beta2=0 (B2 and Bp2) for isotropic materials 

function[Fideg]=Anisotorsion_pzt_e(cr,cl,c2,hi,h2,121,122,tl,t2,ts,L,P,Vy,Vx,Mx,... 

My,M,ep,gp,Sp,Sc); 

y*************************************************************************** 

'/.Define the half-width, and top surface length correction factor 

d=cr*(c2-cl)/2; 

T=sqrt(1+((h2-hl)/(4*d))~2); 

Area=2*d*(hl/2+h2/2); 

m=(hl+h2)/4; 

'/.Designate the compliance Matrix for the composite laminate: 

Sll=Sc(l,l);S12=Sc(l,2);S14=Sc(l,3): 

S21=Sc(2,l);S22=Sc(2,2);S24=Sc(2,3); 

S41=Sc(3,l);S42=Sc(3,2);S44=Sc(3,3) : 

'/.Designate the compliance Matrix for the composite-pzt laminate: 

Spll=Sp(l,l);Spl2=Sp(l,2);Spl4=Sp(l,3) 

Sp21=Sp(2,l);Sp22=Sp(2,2);Sp24=Sp(2,3) 

Sp41=Sp(3,l);Sp42=Sp(3,2);Sp44=Sp(3,3) 

'/.Define elastic constants for constitutive relations of composite laminate only: 

alfal=Sll;alfa2=S14;alfa4=S44; 

'/.Define elastic constants for constitutive relations of composite-pzt laminate: 
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alfapl=Spll;alfap2=Spl4;alfap4=Sp44; 

'/.Define elastic constants for force-strain relations of composite laminate only: 

Bl=l/alfal;B2=-alfa2/alfal;B4=alfa4-(alfa2~2/alfal); 

'/.Define elastic constants for force-strain relations of composite-pzt laminate: 

Bpl=l/alfapl;Bp2=-alfap2/alfapl;Bp4=alfap4-(alfap2"2/alfapl); 

'/.Define the elements of the B matrix: 

bll=4*Bpl*ts*d*T+Bl*t2*h2+Bl*tl*hl; bl2=0; 

bl3=-Bl*d*(t2*h2-tl*hl); 

b21=0; 

b22=(-Bpl*ts*h2*3*d*T)/(3*(h2-hl))+(1/(3*(h2-hl)))*(Bpl*ts*hl"3*d*T)-... 

(1/12)*Bl*t2*h2"3-(1/12)*Bl*tl*hl"3; 

b23=0; 

b31=Bl*d*(t2*h2-tl*hl); 

b32=0; 

b33=(-4/3)*Bpl*ts*d-3*T-Bl*t2*d-2*h2-Bl*tl*d-2*hl; 

B=[bll bl2 b!3;b21 b22 b23;b31 b32 b33]; 

A=inv(B); 

all=A(l,l);al2=A(l,2);al3=A(l,3) 

a21=A(2,l);a22=A(2,2);a23=A(2,3) 

a31=A(3,l);a32=A(3,2);a33=A(3,3) 

a4=(l/2)*d*Bl*t2*h2"2+2*h2*Bpl*ts*d"2*T+d*hl*Bl*t2*h2+4*hl*Bpl*ts*d"2*T+. 

(l/2)*d*Bl*tl*hl~2+2*m*d*T*Bl*t2*h2+8*m*Bpl*d"2*T"2*ts; 

a5=(l/12)*(-Bl*tl*hl"3+6*Bpl*ts*d*T*h2*hl+Bl*t2*h2~3+6*Bpl*ts*d*T*h2"2+.. 

8*m*Bpl*d*T"2*ts*h2+16*m*Bpl*d*T"2*ts*hl); 
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a6=(-l/2)*d"2*(-4*m*T*Bl*t2*h2-t2*Bpl*h2"2+4*Bl*t2*d*T*h2-4*d*t2*T*Bpl*h2+... 

Bl*tl*hl"2-2*Bl*hl*t2*h2); 

'/.Define the elements of the C matrix: 

cll=B2*h2-B2*hl; 

c21=Bp2*d*T*(h2+hl); 

c31=B2*d*(h2+hl); 

cl2=B2*((-l/2)*Bl*t2*h2-2-2*h2*Bpl*ts*d*T+4*hl*Bpl*ts*d*T+(l/2)*Bl*tl*hl-2+... 

hl*Bl*t2*h2)+Bp2*(2*d*T*Bl*t2*h2+4*Bpl*ts*d"2*T"2); 

c22=(B2/12)*(Bl*tl*hl-3+Bl*t2*h2~3)+(Bp2/2)*(-d*T*Bl*t2*h2-2-4*Bpl*ts*d-2*T~2*hl-... 

d*T*hl*Bl*t2*h2-4*Bpl*ts*d"2*T"2*h2); 

c32=(-d/6)*(3*B2*Bl*t2*h2"2+12*d*B2*T*Bpl*ts*h2+8*Bpl*ts*d"2*T"2*Bp2+... 

3*B2*Bl*tl*hl~2+6*B2*hl*Bl*t2*h2+24*d*B2*T*hl*Bpl*ts); 

cl3=(l/12)*B2*(Bl*t2*h2"3+6*Bpl*ts*h2"2*d*T+6*Bpl*ts*hl*h2*d*T+Bl*tl*hl"3); 

c23=(l/4)*Bpl*ts*Bp2*d-2*T-2*(h2-2+hl-2+2*hl*h2); 

c33=(l/12)*d*B2*(-Bl*tl*hl-3+Bl*t2*h2-3+6*Bpl*ts*h2-2*d*T+6*Bpl*ts*hl*h2*d*T); 

cl4=(1/6)*d*(-8*Bpl*ts*d-2*T-2*Bp2+3*B2*Bl*tl*hl-2-6*B2*Bl*hl*t2*h2... 

-12*Bp2*d*T*Bl*t2*h2-12*d*B2*t2*T*h2*Bl+3*B2*t2*Bpl*h2"2+12*d*B2*t2*T*Bpl*h2); 

c24=(l/12)*d*(B2*Bl*tl*hl-3+6*Bp2*d*T*h2*hl*Bl*t2+6*Bp2*d*T*Bl*t2*h2-2-B2*t2*Bpl*h2-3); 

c34=(l/2)*d"2*B2*(-4*d*t2*T*h2*Bl+t2*Bpl*h2"2+4*t2*d*T*Bpl*h2-Bl*tl*hl"2+2*Bl*hl*t2*h2): 

C=[cll cl2 cl3 cl4;c21 c22 c23 c24;c31 c32 c33 c34]; 

'/.Define the elements of the D vector: 

dl=(4*Bp4*d*T*tl*t2+B4*ts*tl*h2+B4*ts*t2*hl)/(ts*t2*tl); 

d2=(-i/2)*(B4*ts*tl*Bl*t2*h2"2+16*Bpl*d"2*T"2*Bp4*t2*ts*tl+8*B4*t2*ts"2*hl*Bpl*d*T+... 

2*B4*t2~2*ts*Bl*hl*h2+B4*t2*ts*Bl*tl*hl~2+4*Bp4*t2~2*tl*d*T*h2*Bl+... 

4*B4*ts"2*tl*h2*Bpl*d*T)/(t2*ts*tl); 

d3=(l/12)*(8*Bpl*d"2*T"2*Bp4*t2*h2+16*Bpl*d-2*T"2*Bp4*t2*hl+6*B4*d*T*Bpl*ts*h2-2+... 

6*B4*d*T*Bpl*ts*hl*h2+B4*Bl*t2*h2"3-Bl*B4*t2*hl"3)/t2; 

d4=(l/2)*d*(4*B4*d*T*ts*tl*Bpl*h2+2*Bp4*Bl*ts*hl*h2*t2-Bp4*Bl*ts*tl*hl"2+... 
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4*Bp4*tl*d*T*Bl*t2*h2+B4*ts*tl*Bpl*h2~2-4*B4*d*T*ts*tl*h2*Bl)/(ts*tl); 

'/.Define the shear flow at s=0: 

q0=(1/(2*Area))*(M-a22*a5*Vy+(al3*a4-a33*a6)*Vx); 

'/.Define the derivatives of the strain, and curvatures: 

e0p=al3*Vx; 

Kxp=a22*Vy; 

Kyp=a33*Vx; 

'/.Define the values for the Q's: 

Ql=cll*q0+cl2*e0p+cl3*Kxp+cl4*Kyp; 

Q2=c21*q0+c22*e0p+c23*Kxp+c24*Kyp; 

Q3=c31*q0+c32*e0p+c33*Kxp+c34*Kyp; 

Zl=4*ep*d*T*Bpl*ts; 

Z2=0; Z3=0; 

eO=all*(P-Q1+Z1)-al2*(Mx+Q2-Z2)-al3*(My+Q3-Z3) 

Kx=a21*(P-Q1+Z1)-a22*(Mx+Q2-Z2)-a23*(My+Q3-Z3) 

Ky=a31*(P-Q1+Z1)-a32*(Mx+Q2-Z2)-a33*(My+Q3-Z3) 

'/.The PZT shear around the perimeter (using shear in the structural axes) 

g_total=4*gp*d*T; 

e_total=4*ep*d*T; 

'/.The rotation in radians per unit length: 

dFdz=(l/(2*Area))*(-e0*cll+Kx*c21+Ky*c31+q0*dl+e0p*d2+Kxp*d3+Kyp*d4+e_total*cll+g_total); 

'/.The rotation in degrees per unit length: 

dfdz_deg=dFdz*180/pi; 

'/.The rotation in degrees for entire length of beam: 

Fideg=dfdz_deg*L; 

return 
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'/.Function transform.m 

'/.Written by Capt Peter Cseke, Jr. - Winter 2000 - AFIT/ENY 

'/.Subroutine to Compl_aniso_pzt_e.m 

'/. 

'/.Calcultes the transformed values of the piezoelectric strain vector in the 

'/.structural axes, given the PZT layup angle. 

'/. 

'/.Caution: Fiber orientation (in this subroutine only) agrees with that 

'/, accepted in the literature for smart materials, that is: 

'/, 3 - fiber direction 

'/, 1 - transverse direction 

'/, 2 - out of plane direction 

'/, This change in notation does not affect the notation in main code 

'/, as long as the PZT strains are sent back in the z-x structural axes 

'/. that correspond to the original structural axes defined in the 

'/, problem statement. 

'/.Uses  : PZT strains (3x3 matrix) in principle axes 1-2 

'/.Outputs: PZT strains (3x3 matrix) in structural axes z-x. 

function [pztstrainzx]=transform(pztstrainl2,angledeg); 

'/.Calculate the rotation angle in radians 

anglerad=angledeg*pi/180; 

'/.For the sake of simplicity 

s=sin(anglerad); 

c=cos(anglerad); 

'/.The transformation matrix 

Trans=[c 0 s;0 1 0;-s 0 c] ;  '/. {x y z}=[T]{l 2 3} rotation 

'/.Trans=[c -s 0;s c 0;0 0 1] ; '/. {z x y}=[T]{3 1 2} rotation 

E-15 



'/.Invert the transformation matrix 

Cinv=inv(Trans); 

'/.The transformation of PZT strains from the 3-1 principle into the z-x structural axes 

pztstrainzx=Cinv*pztstrainl2*Trans; 

return 
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